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Using Bisimulation Metrics to Analyze and

Evaluate Latent State Representations

Nele Albers1[0000−0002−0502−6176], Miguel Suau1, and Frans A. Oliehoek1

Intelligent Systems, Delft University of Technology, Delft, The Netherlands
{n.albers, m.suaudecastro, f.a.oliehoek}@tudelft.nl

Abstract. Deep Reinforcement Learning (RL) is a promising technique
towards constructing intelligent agents, but it is not always easy to under-
stand the learning process and the factors that impact it. To shed some
light on this, we analyze the Latent State Representations (LSRs) that
deep RL agents learn, and compare them to what such agents should
ideally learn. We propose a crisp definition of ’ideal LSR’ based on a
bisimulation metric, which measures how behaviorally similar states are.
The ideal LSR is that in which the distance between two states is pro-
portional to this bisimulation metric. Intuitively, forming such an ideal
representation is highly favorable due to its compactness and generaliza-
tion properties. Here we investigate if this type of representation is also
desirable in practice. Our experiments suggest that learning representa-
tions that are close to this ideal LSR may improve upon generalization
to new irrelevant feature values and modified dynamics. Yet, we show
empirically that the extent to which such representations are learned
depends on both the network capacity and the state encoding, and that
with the current techniques the exact ideal LSR is never formed.

Keywords: Deep Reinforcement Learning · Bisimulation Metrics.

1 Introduction

Recent years have seen a surge of algorithms and architectures for deep Rein-
forcement Learning (RL), many of which have shown remarkable success for
various problems. Yet, little work has attempted to relate the performance of
these algorithms and architectures to what the resulting deep RL agents actually
learn, and whether this corresponds to what we suppose they should ideally
learn. Such a comparison may allow for both an improved understanding of why
certain algorithms or network architectures perform better than others and the
development of methods that specifically address discrepancies between what
is and what should be learned. We thus explore empirically the Latent State
Representations (LSRs) a deep RL agent forms of its environment to see whether
these match our theoretical expectations.

When we speak of what a deep RL agent learns, we mean the internal
representation that a neural network forms of the environment. That is, the
activation patterns that arise in each hidden network layer as the result of feeding
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2 N. Albers et al.

(histories of) observations to the network. As the observation space is potentially
very large and the capacity of an RL agent is limited, an agent has to learn what
to attend to when creating this internal representation. A robot that is trained
to fight fires in a residential area, for instance, might learn that certain features
such as the house colors do not matter. If so, it will map two observations that
differ only in this feature to the same activation pattern. The house color will
then no longer influence the action choices, as the agent has learned to ignore it.

Among the desirable properties of such an LSR are that it should make only
necessary distinctions between (histories) of observations, allow the agent to
learn to act optimally, and enable generalization to new irrelevant feature values
and modified dynamics. An LSR that has these properties is one in which the
Euclidean distances between states are proportional to a bisimulation metric [6],
which measures how ”behaviorally different” [7] states are. As such an LSR makes
only those distinctions that are needed for the prediction of the next reward and
state [12], we call it the Coarsest Markov State Representation (CMSR). It is
this CMSR that we suppose a deep RL agent should ideally learn. Our main
contribution is that we propose a way to measure the degree to which the CMSR
is learned, and use this measure to gain insights into the learning process of deep
RL agents using Deep Q-Networks (DQNs) [22] as example. Moreover, we show
empirically that learning closer to the CMSR may lead to better generalization
to new irrelevant feature values and modified dynamics. These evaluations are
based on differences in the Markovianity of LSRs that either occur naturally or
are obtained via a novel auxiliary loss that pushes a DQN to learn the CMSR.

2 Related Work

Exploring the Learning of Deep RL Agents. Our main goal is to contribute
to a better understanding of the learning process of deep RL agents. To this end,
we propose using measures based on bisimulation metrics that quantitatively
denote how Markov an LSR is. Other research has used saliency maps [13] or
t-SNE plots [22][25], the latter of which we also use as supporting evidence. These
approaches result in figures that are easy to understand, but they do not produce
quantitative measures to effectively summarize the characteristics of an LSR.
Instead, to compare state representations, one has to look at multiple images and
deduce based on domain knowledge what an agent has learned. An alternative is to
plot the test performance [16] or state-action values for certain states [22] during
training. Yet, in contrast to our approach, these approaches do not say anything
about whether an agent has actually learned or simply memorized [14], the latter
of which may hinder generalization. Although offering some improvement, this
also holds for measuring out-of-distribution generalization [4][26]. The reason
is that such out-of-distribution generalization may be good even if the agent
has largely memorized. Lastly, to the best of our knowledge, no prior work has
analyzed the learning process by computing how similar to the CMSR an LSR is.

Representation Learning Based on Bisimulation Metrics. To inves-
tigate the properties of LSRs that are more similar to the CMSR, we design
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 3

an auxiliary loss based on bisimulation metrics. Related work in this regard is
presented by [25], who also propose learning LSRs based on bisimulation metrics.
Yet, while [25] create an LSR in which distances between states correspond to how
behaviorally different they are under a varying policy, we take all actions into
consideration. Thus, an LSR learned by means of the approach of [25] potentially
makes fewer distinctions than are needed to predict the reward and next state for
all actions. Such an LSR hence generalizes to only a subset of the changes made to
the dynamics that still allow for generalization based on the LSR that we propose
to learn. In a similar vein to [25], [1] also base their approach on π-bisimulation
metrics. Another related work is the one by [11]. Yet, whereas the Euclidean
distances in our proposed LSR are proportional to the distances assigned by a
bisimulation metric, the Euclidean distances between states in the LSR learned
by means of the auxiliary loss of [11] provide an upper bound to bisimulation
metric-based distances. Lastly, [23] employ the more general notion of MDP

homomorphism metrics for representation learning. MDP homomorphism metrics
differ from bisimulation metrics in that actions are also abstracted.

Representation Learning Based on Other Notions. The auxiliary loss
we design introduces a bias to the learning. Several other approaches to bias
the representation learning of deep RL agents have been proposed. For example,
[17] and [8] put forward auxiliary losses based on predicting the next reward or
the discount factor. Such methods tend to be successful in practice, but do not
have strong theoretical foundations. Other work such as [19] is based on forming
a model of the environment as auxiliary task. Yet, this tends to not work well
for high-dimensional observations with large amounts of irrelevant information.
Furthermore, rather than biasing the learning of deep neural networks by means
of auxiliary losses, other work has proposed different models to learn more useful
representations such as by incorporating ideas from symbolic reasoning [10]. For
instance, [24] constrain neural networks to capture typical characteristics of
relational reasoning. Another approach to learning more useful representations is
to specifically focus on factors that may hurt generalization. [16], for example,
improve generalization by reducing the non-stationarity an agent encounters
during training. Moreover, [15] adapt to RL several regularization techniques from
the context of classification that are based on injecting noise during training.

3 Background

Markov Decision Process. An infinite-horizon Markov Decision Process (MDP)
is a tuple 〈S,A, P,R, γ〉 where S and A describe the space of Markov states and
possible actions, respectively, P : S ×A→ Π(S) is the transition function such
that P (s′|s, a) ∈ [0, 1] is the probability of arriving in state s′ after taking action
a in state s, R : S × A → R is the reward function such that R(s, a) is the
instant reward for taking action a in state s, and 0 ≤ γ ≤ 1 is a discount factor.
The goal of an agent in an MDP is to learn an optimal policy π∗ : S → Π(A)
that maximizes the expected cumulative (discounted) reward E

[
∑∞

t γtrt
]

for
acting in the given environment. The Q-value function Qπ : S×A→ R describes
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the expected cumulative reward for taking action a in state s and executing π

thereafter. The expected cumulative reward for taking an action a in a state s and
following an optimal policy afterwards is given by Q∗(s, a), where Q∗ = maxπ Q

π.
Bisimulation Metrics. Bisimulation metrics [6] are based on the notion of

stochastic bisimulation [12], which considers states as equivalent if and only if
they have the same expected reward and the same transition distribution over
all other abstract states for all actions. Such states that are equivalent under
the notion of stochastic bisimulation are called bisimilar. Bisimulation metrics
can be regarded as a quantitative version of stochastic bisimulation in that they
assign a distance of zero only to bisimilar states, and that if the parameters of
two bisimilar states are altered on a small scale, the metric distance between the
two states will stay small. Thus, bisimulation metrics can be seen as a measure
of behavioral similarity [7]. Theorem 4.5 in [6] defines one bisimulation metric
dfix that considers states as equivalent if and only if they are bisimilar. Given
F : M →M , where M is the set of all semimetrics on S that assign distances of
at most 1, this dfix is defined as the least fixed point of the following equation:

F (d)(s, s′) = max
a∈A

(

cR|R(s, a)−R(s′, a)|+ cTTK(d)
(

P (s, a), P (s′, a)
)

)

. (1)

cR and cT are two positive one-bounded constants and TK(d) is the Kantorovich
distance. It is dfix that Euclidean distances in the CMSR are proportional to.

4 Markovianity of LSRs During Learning

Here we analyze the LSRs deep RL agents naturally form of their environments
and how they compare to what such agents should ideally learn.

4.1 Methodology

Measuring Characteristics of LSRs. We propose using Pearson correlation
coefficients1 to gain insights into the learning process. These correlation coef-
ficients are based on (components of) bisimulation metrics one the one hand,
and the Euclidean distances between the activations states are mapped to in a
network layer on the other hand. Let zi, zj be the activations si, sj are mapped
to in a network layer, dE(zi, zj) the Euclidean distance of zi and zj , dB(si, sj)
the distance of si and sj for some bisimulation-based measure, and dE and dB
averages. Then the Pearson correlation coefficient rdB

is:

rdB
=

∑|S|−2
i=0

∑|S|−1
j=i+1(dE(zi, zj)− dE)(dB(si, sj)− dB)

√

∑|S|−2
i=0

∑|S|−1
j=i+1(dE(zi, zj)− dE)2

√

∑|S|−2
i=0

∑|S|−1
j=i+1(dB(si, sj)− dB)2

.

(2)
Using measures based on or inspired by bisimulation metrics for dB leads to

the Pearson correlation coefficients that are defined in Table 1. These correlation

1 The Pearson correlation coefficient measures the linear correlation of two variables.
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 5

Table 1. Correlation coefficients (CCs) based on Equation 2 and their interpretations.
rdfix

and rRew are based on (components of) bisimulation metrics, and rQ∗ replaces
the immediate reward in rRew by Q∗.

CC dB Interpretation

rdfix
dfix(si, sj) Similarity of representation to CMSR.

rRew maxa∈A |R(si, a)−R(sj , a)| Degree of clustering based on rewards.
rQ∗ maxa∈A |Q

∗(si, a)−Q∗(sj , a)| Similarity to Q∗-irrelevance abstraction.

coefficients allow us to analyze the degrees to which the CMSR is learned, states
are grouped based on instant rewards, and states are clustered based on Q-values
in an LSR. Moreover, we can formally define the CMSR based on rdfix

, which is
obtained by letting dB in Equation 2 be the bisimulation metric dfix

2.

Definition 1 (Coarsest Markov State Representation (CMSR)). The

CMSR is a representation for which the following holds:

rdfix
= 1. (3)

Theoretical Properties of the CMSR. We suppose that a deep RL agent
should ideally learn the CMSR. This is due to several desirable theoretical
properties of this representation. These theoretical properties arise because 1) the
CMSR makes the lowest number of distinctions that still enables the prediction
of the reward and next state [12], and 2) Euclidean distances between states in
the CMSR are proportional to how behaviorally different states are. This leads
to the following advantageous characteristics of the CMSR:

– Feasibility of Learning π∗. If an agent can predict the next reward and state
for each action, an LSR is said to be Markov and the agent may find an
optimal policy based on (histories of) observations3 [21]. If, however, the
reward and next state cannot be predicted based on the LSR, the agent in
the most general case cannot learn an optimal policy.

– Indifference to Irrelevant Features. The CMSR does not distinguish observa-
tions that refer to the same state in the abstract MDP. That is, the CMSR
treats as equivalent two observations that differ only in features that are
irrelevant for predicting next states and rewards. This is especially important
for domains with high-dimensional observations such as images.

– Generalization to Modified Dynamics. If a subset of the features required
for predicting the reward and next internal state for an original domain is
sufficient for predicting the reward and next internal state after modifying
the dynamics, the distinctions the CMSR makes for the original domain

2 Computed via the MCFZIB solver [9].
3 While representing an optimal policy may require solely a coarser abstraction of the
state space, such a representation may not suffice for learning an optimal policy [21].
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suffice to learn the Q-values of such a modified domain. Moreover, since the
Euclidean distance between two states in the CMSR varies smoothly as their
parameters are changed, the CMSR is likely to still be useful if small such
changes are made. This is important, as dynamics are commonly estimated
and domain shifts may arise in problems such as robotics [15].

Q∗-irrelevance Abstraction. We suppose that LSRs should ideally be
similar to the CMSR. Yet, the output layer of a DQN is pushed to represent Q-
values, which may also cause LSRs to do so. We call an LSR in which the Euclidean
distances between activations are proportional to the Euclidean distances between
the corresponding Q-values a Q∗-irrelevance abstraction. This definition is based
on generalizing the levels of state abstraction by [18] to the Euclidean space in
which the activations in network layers fall. As non-bisimilar states may have the
same Q-values, such an LSR may make fewer distinctions than the CMSR and
hence no longer preserve the one-step model. Thus, a Q∗-irrelevance abstraction
may not have the theoretical properties of the CMSR. We measure the extent to
which a Q∗-irrelevance abstraction is formed via the correlation coefficient rQ∗ .

Domain. Our results presented here are based on a modified version of the
fully observable Gridworld 3x3 domain [5], but supporting results from Gridworld
5x5, FrozenLake 8x8 from OpenAI Gym and the partially observable Hallway
domain are described in [2]. In Gridworld 3x3, the state is a combination of the
agent’s position on a 3x3 grid and its orientation. Apart from the ground state,
the agent’s observations in our domain version contain a superfluous feature fS ,
which can take 5 possible values sampled uniformly at random. This creates 5
behaviorally identical or bisimilar states out of each ground state. The agent can
choose from the deterministic actions {forward, rotate}. The reward is 1 for
reaching the goal location in the center of the grid and 0 otherwise.

State Encoding. We one-hot encode the ground states, and use 3 different
ways of encoding fS (Table 2). The encodings vary in the degree to which bisimilar
states are encoded similarly, as mirrored by the encoding-based value for rdfix

in
Table 2. Thus, the encodings have different effects on the initial LSR, which may
impact the final LSR and its similarity to the CMSR.

4.2 Analysis of the Learning Process

In the following, we now use our proposed correlation coefficients and t-SNE
[20] plots to shed light on the natural learning process of deep RL agents. Fig. 1
shows that the learning process consists of three overlapping learning phases:

1) States are grouped based on multi-step rewards. Since the target
network provides the estimates of the Q-values of next states during training, it
is not surprising that the activations of states with the same n+ 1-step rewards
tend to be grouped together, where n is the number of times the target network
has been updated. Fig. 1-1 shows the hidden activation patterns right after the
DQN has been initialized4. At this point, any clustering is incidental in that it

4 Since the encoding of fS is lower-dimensional than the one of the ground state, the
t-SNE plot shows one cluster for each value for fS rather than for each ground state.

Regular papers BNAIC/BeneLearn 2021

325



Using Bisimulation Metrics to Analyze and Evaluate LSRs 7

Table 2. State encodings and their definition of the superfluous feature fS . We also
show the value for rdfix

based on the encoded states.

Encoding fS rdfix

Norm (N) fS ∈ {0, 0.25, 0.5, 0.75, 1} 0.251
One-hot (OH) fS ∈ {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]} 0.087
Original (O) fS ∈ {0, 1, 2, 3, 4} 0.015

Fig. 1. rRew, rdfix
, rQ∗ and t-SNE plots of the activations observations are mapped to

during training for the LSR of a 2-layer DQN for the OH-encoding. The hidden layer
size is 50 and the target network is updated every 50 episodes. All observations differing
solely in fS are drawn in the same color in the t-SNE plots and the coloring scheme
for the ground states is shown on the left. Bisimilar ground states are shown in the
same color. The vertical lines mark the episodes for which we show t-SNE plots. The 3
non-black lines thereby indicate 1) the first time the agent reaches the goal in each of
100 test episodes, 2) the first time the agent has learned π∗ and 3) convergence to π∗.

depends on the state encoding5 and network initialization. In Fig. 1-2, we see that
the DQN has formed a separate cluster for those states that have an immediate
reward of 1 (dark green). The target network has not yet been updated, so
all other states, which have an immediate reward of 0, should not yet fall into
separate clusters. Also note that the yellow curve (rRew) is now at its maximum.
This is expected, because rRew measures the degree of similarity between the
current LSR and a representation that clusters states together if and only if they
have the same immediate reward. After the target network has been updated
once, a new separate cluster is formed for those states that have a non-zero
two-step reward (Fig. 1-3, dark pink). This is accompanied by a drop in rRew, as
states are now no longer distinguished solely based on their immediate rewards.

2) The LSR becomes more similar to the CMSR. This pattern is
mirrored by the increase in the green curve (rdfix

) at the beginning of training.
However, the exact CMSR is not learned, as rdfix

is never equal to 1.

5 The impact of the state encoding is discussed in the next section.
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(a) OH-encoding. (b) N-encoding. (c) O-encoding.

Fig. 2. Mean peak and final rdfix
and final rQ∗ with 95%-confidence intervals for the

LSRs of 2-layer DQNs for different state encodings and hidden layer sizes. The vertical
lines indicate the smallest hidden layer sizes for which 1) the agent always arrives at the
goal in 100 test episodes and 2) the DQN converges to π∗ at least 1 out of 5 times. Each
curve is labeled with the Pearson correlation of the respective correlation coefficient
and the hidden layer sizes that are large enough for the DQN to learn π∗ at least 1 out
of 5 times.

3) States are increasingly clustered based on Q-values, as visualized
by the step-wise increase in the gray curve (rQ∗), after an initial plateau. Ulti-
mately, rQ∗ reaches a value near 1 when the DQN converges to π∗. At the same
time, rdfix

decreases for this domain as the inter-cluster distances become more
and more different from those of the CMSR6. This is shown near episode 200,
where rdfix

begins to decrease when rQ∗ strongly increases again. The final LSR
is thus less similar to the CSMR for this domain than during the second phase.

This analysis suggests that while a DQN does naturally form the CMSR to
some degree, the exact CMSR is not learned. Instead, states are at some point
clustered based on Q-values rather than bisimilarity, which may cause the LSR to
become less similar to the CMSR. Given the useful theoretical properties of the
CMSR, the latter might have negative consequences for a network’s generalization
ability. We examine this impact on the generalization performance in Section 5.

4.3 Factors Impacting the Learning Process

When training a DQN, one has to make a plethora of choices such as for the
network architecture and the state encoding. Commonly, we make such choices
primarily based on average returns. However, the decisions we make might also
impact the LSRs that are formed. We therefore analyzed how different factors
impact the learning process described above. We find that the extent to which
LSRs become similar to the CMSR during and still are at the end of training
depends on the network capacity and state encoding. This is discussed below.

Network Capacity. The dark green curve (peak rdfix
) in Fig. 2(a) shows

that the LSR becomes most similar to the CMSR during training for hidden
layer sizes just to the right of the second vertical line. These hidden layer sizes

6 The decrease in rdfix
is related to the network capacity, discussed in the next section.
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 9

are necessary for the DQN to be able to converge to π∗. For larger hidden layers,
the LSR becomes progressively less similar to the CMSR during training. This is
captured by the value of −0.118 for the Pearson correlation coefficient between
peak rdfix

and sufficiently large hidden layer sizes (Fig. 2(a)). The reason for this
pattern is that larger hidden layers make a network more flexible, and thus allow
the network to converge to the true Q-values even if less similar to the CMSR is
learned in the hidden layer during training. Such large networks hence learn the
Q-values without grouping behaviorally equivalent observations together.

The LSR at the end of training, however, is more similar to the CMSR for
larger hidden layers. This is indicated by the bright green curve (final rdfix

)
and the corresponding Pearson correlation coefficient of 0.272 with respect to
sufficiently large hidden layer sizes in Fig. 2(a). The reason is that DQNs with
smaller hidden layers eventually need to largely cluster states based on Q-values
in their hidden layers due to their lower flexibility. Otherwise, their output layers
cannot represent the true Q-values. Thus, while DQNs with smaller hidden layers
initially learn closer to the CMSR, their LSR is ultimately further abstracted
towards a Q∗-irrelevance abstraction. The latter is supported by the observation
that the final values for rQ∗ (gray curve) are higher for smaller hidden layers,
which is captured by the Pearson correlation coefficient of −0.199 between the
final values for rQ∗ and sufficiently large hidden layer sizes in Fig. 2(a).

State Encoding. The CMSR is formed to a lesser degree during learning
if it is more difficult and less necessary to be learned. Based on the three dark
green curves (peak rdfix

) in Fig. 2, we can see that the LSRs become most similar
to the CMSR during learning for large hidden layers for the N-encoding and
least similar for the O-encoding. The reason for this pattern is that bisimilar
states have the most similar encodings in the N- and the least similar ones in
the O-encoding (see rdfix

in Table 2). Hence, for the latter encoding it is most
difficult to group bisimilar states together in the LSR. Thus, as the network
capacity increases and it therefore becomes less necessary to learn the CMSR,
the CMSR is progressively less formed during learning for state encodings that
make it more difficult to do so. This also impacts the LSRs present at the end of

training, as mirrored by the three bright green curves (final rdfix
) in Fig. 2.

Given that both the network capacity and the state encoding impact the
degree to which the CMSR is formed, it is important to make a considerate choice
of the network architecture and state encoding if learning the CMSR is desired.

5 Practical Usefulness of the CMSR

While the theoretical advantages are apparent, we will now investigate whether
striving to learn the CMSR is also useful in practice. To obtain LSRs that are
very similar to the CMSR, we introduce a bisimulation-based auxiliary loss that
pushes a network to form the CMSR as LSR.

Bisimulation-based Auxiliary Loss.We calculate dfix(si, sj) for all si, sj ∈
S, i 6= j. During training, we then compute an auxiliary loss based on the premise
that we want the Euclidean distances between the activations of states to be
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(a) Hidden layer size of 10. (b) Hidden layer size of 20. (c) Hidden layer size of 65.

Fig. 3. Average percentage of optimal actions learned by 2-layer DQNs with different
hidden layer sizes for the O-encoding, trained with and without the auxiliary loss.
Optimal actions returned by the DQN for each non-terminal ground state are measured
for 1, 000 values for fS sampled uniformly at random from an interval that is i times as
large as the one used during training. The value i is shown on the x-axis. 95%-confidence
intervals based on 10 repetitions are shown.

proportional to their distances assigned by the bisimulation metric dfix. In other
words, we want that dE(zi, zj) is equal to d∗E(zi, zj) = dmax

E × dfix(si, sj), where
dmax
E is a hyperparameter for how far apart the activations of non-bisimilar states

should be. We thus compute a target activation z∗i for all si ∈ S:

z∗i = zi +
1

2
×

∑

j 6=i

(

d∗E(zi, zj)− dE(zi, zj)
) zi − zj

||zi − zj ||
, (4)

where ||zi − zj || is the length of the vector zi − zj . Note that the unit-length

vector
zi−zj
||zi−zj ||

between zi and zj is multiplied by half of the amount by which

dE(zi, zj) should change. The idea behind this is that if zi and zj should be
pulled apart or closer together, both are moved by half the total amount in the
respective direction. Based on this, we minimize the MSE between zi and z∗i for
all si ∈ S. We found this approach to work better than directly minimizing the
MSE between dE and d∗E .

5.1 Generalization to New Irrelevant Feature Values

The first type of generalization we consider is the one to new values of irrelevant7

features. We train 2-layer DQNs for Gridworld 3x3 with and without the auxiliary
loss. At test time, we sample 1, 000 values for the superfluous feature fS randomly
from an interval that is i times as large as the one used during training, where
i ∈ {1, 2, 4, 6, 8, 10, 25, 50, 100, 500, 1000}. For each sampled value for fS , we
compute the optimal action returned by the trained DQN and compare it to π∗.

Fig. 3 reveals that if the auxiliary loss is used, the generalization to new
values for fS tends to be better than if no auxiliary loss is used. This makes
sense, as using the auxiliary loss causes the LSR to ignore fS to a larger extent
(Fig. 4). However, Fig. 3 shows that there are two exceptions to the observation
that introducing the auxiliary loss improves upon the generalization. These are 1)
the generalization to very large intervals and 2) DQNs with large hidden layers:

7 Irrelevant features are not required for predicting the next reward and internal state.
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Very Large Intervals. Generalization to values for fS sampled from very
large intervals tends to be better if LSRs that are not entirely indifferent to fS are
closer to a Q∗-irrelevance abstraction. Notice that while introducing the auxiliary
loss leads to improved generalization for small and moderately sized intervals,
it deteriorates the generalization for very large intervals. This can be explained
by the fact that even though the LSRs learn to ignore fS to a larger extent
when we apply the auxiliary loss, they do not do so entirely. At the same time,
the Euclidean distances between the activations of states with different optimal
actions are on average more similar to those between the activations of states
with the same optimal actions in the CMSR than in a Q∗-irrelevance abstraction
for this domain8. Hence, that for very different values for fS an observation is
mapped to a latent representation that causes the DQN to return a sub-optimal
action is less likely if the DQN learns closer to a Q∗-irrelevance abstraction. Yet,
this only holds because the DQNs do not learn the precise CMSR.

DQNs with Large Hidden Layers. One would expect DQNs with varying
hidden layer sizes to generalize similarly well if the LSRs are very close to the
CMSR. Yet, using the auxiliary loss tends to lead to worse generalization to large
intervals for large hidden layers (Fig. 3(c)) than for smaller ones (Fig. 3(a) and
3(b)). The reason is that the LSRs of DQNs with large hidden layers become less
similar to the CMSR again towards the end of training for our settings for the
auxiliary loss. More precisely, we decay the weight of the auxiliary loss during
training and continue to train even after the weight has become 0. This continued
training after the auxiliary loss is no longer applied causes the LSRs of larger
DQNs to increasingly distinguish observations based on fS again and hence to
generalize worse to large intervals. Thus, for large DQNs to have an LSR that is
very similar to the CMSR by the end of training, it is not sufficient to apply the
auxiliary loss only until close to the CMSR is formed. Instead, the auxiliary loss
needs to be applied longer, if not during the entire training.

Worse generalization hence only arises when the exact CMSR is not formed.
Moreover, even then it only occurs when either extremely different values for fS
are sampled or the auxiliary loss is stopped too soon for very large DQNs.

5.2 Generalization to Modified Dynamics

Here we now explore a second type of generalization, namely the one to modifi-
cations of the dynamics that do not make formerly irrelevant features relevant.
2-layer DQNs with hidden layer sizes between 3 and 60 are trained each 10 times
on Gridworld 3x3, and subsequently retrained after modifying the transition
function. We reset the output-layer representation before and hold the LSR fixed
during retraining. Based on Fig. 5, we find that the following three factors impact
the generalization to the modified domain:

8 Non-terminal ground states have mean Euclidean distances of 0.175 and 0.333 to other
non-terminal ground states with the same and different optimal actions, respectively,
in a Q∗-irrelevance abstraction for Gridworld 3x3. In the CMSR, however, the mean
Euclidean distances to non-terminal ground states with the same and different optimal
actions are 0.141 and 0.144, respectively, if dmax

E = 1.
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(a) Color scheme. (b) rdfix
= 0.11. (c) rdfix

= 0.98.

Fig. 4. t-SNE plots and rdfix
of the LSRs at the end of training b) without and c) with

the auxiliary loss for a 2-layer DQN with a hidden layer size of 10 for the O-encoding.
Activation patterns of bisimilar observations have the same color.

(a) N - Without. (b) OH - Without. (c) O - Without. (d) O - With.

Fig. 5. Mean L1-error with respect to the Q-values during retraining of 2-layer DQNs
with varying hidden layer sizes on the modified domain for the Norm (N), One-Hot
(OH) and Original (O) state encodings. The hidden-layer weights are initialized to those
of DQNs trained on Gridworld 3x3 either with or without the auxiliary loss and are
not updated during retraining. The output-layer weights are newly initialized before
retraining. Values are based on 10 repetitions and 95%-confidence intervals are shown.

Similarity to Q∗-irrelevance Abstraction. The generalization is better
when the LSR is less similar to a Q∗-irrelevance abstraction for the original
domain. Recall that DQNs with larger hidden layers learn LSRs that are less
similar to a Q∗-irrelevance abstraction (gray curves in Fig. 2). This explains why
DQNs with larger hidden layers tend to generalize best for the Norm (N) and
One-Hot (OH) encodings. Moreover, the created LSRs for large hidden layers are
closer to a Q∗-irrelevance abstraction for the N- and OH- than for the Original
(O)-encoding (gray curves in Fig. 2), which is why the former lead to higher
L1-errors on the modified domain.

Similarity to CMSR. Lower L1-errors are achieved when the LSR is closer
to the CMSR. Moderately sized hidden layers are more similar to the CMSR
for the O-encoding than even larger hidden layers (bright green curve in Fig.
2(c)), which is why the former lead to better generalization. Note that this occurs
despite the higher flexibility of larger networks. For the OH- and N-encodings,
the largest tested hidden layer sizes do not yet cause the final LSR to be less
similar to the CMSR (Fig. 2(a) and 2(b)). Thus, DQNs with moderately sized
hidden layers do not outperform DQNs with larger ones for those two encodings.
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Network Capacity. DQNs with larger hidden layers are less dependent
on the LSR when it comes to learning the new Q-values due to their higher
capacity. This adds to the fact that larger DQNs generalize best for the N- and
OH-encodings. Note also that due to their lower flexibility, DQNs with very small
hidden layer sizes need to learn an LSR that is more similar to a Q∗-irrelevance
abstraction for the new domain to be able to learn the new Q-values. This is not
possible if the LSR is fixed during retraining.

Thus, the naturally occurring differences in Markovianity between LSRs show
that learning an LSR that is more similar to the CMSR tends to aid generalization,
especially for moderately sized hidden layers. Furthermore, adding an auxiliary
loss to the training that pushes a DQN to learn closer to the CMSR in its hidden
layer leads to better generalization for all networks except those with very small
hidden layers (Fig. 5(d)). The latter occurs because due to their lower flexibility,
very small networks need to learn closer to a Q∗-irrelevance abstraction in their
hidden layers to be able to learn the new Q-values in their output layers.

6 Conclusions

We analyzed the LSRs deep RL agents form of their environments to gain a better
understanding of the learning process and the factors that impact it. Thereby,
we suppose that due to its theoretical and especially generalization properties,
an agent should ideally learn the CMSR. In the CMSR, distances between states
are proportional to how behaviorally different the states are. We find that while
LSRs tend to become more similar to the CMSR at the start of training, states
are ultimately clustered based on Q-values rather than behavioral similarity. This
may cause the LSRs to become less similar to the CMSR again. Moreover, the
precise CMSR is not learned in any of our experiments. Our standard network
architectures and optimization algorithms thus do not lead to ideal LSRs. While
our analysis in this paper is based on Gridworld 3x3, we obtained comparable
results for the learning process on Gridworld 5x5, FrozenLake 8x8 from OpenAI
Gym and the partially observable Hallway domain in [2].

Our analysis of the factors impacting the learning process further reveals that
both the state encoding and the network capacity impact the degree to which
the CMSR is formed during and is still present at the end of training. For large
hidden layer sizes, for example, networks learn the CMSR to a much lesser extent
during training. The reason is that due to their higher flexibility, such networks
can learn the Q-values without grouping behaviorally equivalent observations
together. Notably, the CMSR is even less learned by such large networks if it is
also rather difficult to form the CMSR due to the state encoding. It is thus crucial
to carefully choose both network architecture and state encoding if learning closer
to the CMSR is desired. Future work should explore the generalization of these
findings to environments with more complex observations. For such environments,
our proposed correlation coefficients can be made more scalable by approximately
computing the bisimulation metric based on the algorithm by [3].
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Our claim that deep RL agents should ideally learn the CMSR is supported
by our empirical findings. That is, we find that learning closer to the CMSR
may improve upon generalization to new irrelevant feature values and modified
dynamics. Our results thus show that learning good LSRs is crucial. Rather than
selecting architectures and optimization algorithms primarily based on average
returns, we should hence strive to make a more informed decision based on the
LSRs that are formed. To this end, we need to also report the quality of the LSRs
learned in our experiments via measures such as the ones we propose. Moreover,
as our current architectures and algorithms do not form ideal LSRs, it is impor-
tant that we as a community strive to develop scalable methods that address the
discrepancies between what is and what should be learned. The auxiliary loss we
designed provides a starting point, but has to be made more scalable to be useful
in practice. For example, the expensive exact computation of the bisimulation
metric could be replaced by an approximation that is incorporated into training
in a vein similar to the approach by [3].
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Kühnberger, K.U., Lamb, L.C., Miikkulainen, R., Silver, D.L.: Neural-symbolic
learning and reasoning: Contributions and challenges. In: 2015 AAAI Spring Sym-
posium Series (2015)

11. Gelada, C., Kumar, S., Buckman, J., Nachum, O., Bellemare, M.G.: DeepMDP:
Learning continuous latent space models for representation learning. In: Proceedings
of the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 2170–2179. PMLR (2019)

12. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence 147(1-2), 163–223 (2003).
https://doi.org/10.1016/S0004-3702(02)00376-4

13. Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding Atari
agents. In: Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 1792–1801. PMLR (2018)

14. Hausknecht, M., Stone, P.: The impact of determinism on learning atari 2600 games.
In: AAAI Workshop on Learning for General Competency in Video Games (2015)

15. Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C., Devlin, S., Hofmann,
K.: Generalization in reinforcement learning with selective noise injection and
information bottleneck. In: Advances in Neural Information Processing Systems 32.
pp. 13956–13968 (2019)

16. Igl, M., Farquhar, G., Luketina, J., Boehmer, W., Whiteson, S.: The impact of
non-stationarity on generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826 (2020)

17. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. In:
5th International Conference on Learning Representations, ICLR (2017)

18. Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction
for MDPs. In: International Symposium on Artificial Intelligence and Mathematics,
ISAIM (2006)

19. Li, X., Li, L., Gao, J., He, X., Chen, J., Deng, L., He, J.: Recurrent reinforcement
learning: A hybrid approach. arXiv preprint arXiv:1509.03044 (2015)

20. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. Journal of machine
learning research 9(Nov), 2579–2605 (2008)

21. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden
State. Ph.D. thesis (1996)

22. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

23. van der Pol, E., Kipf, T., Oliehoek, F.A., Welling, M.: Plannable approximations
to MDP homomorphisms: Equivariance under actions. In: AAMAS (2020)

24. Santoro, A., Raposo, D., Barrett, D.G., Malinowski, M., Pascanu, R., Battaglia, P.,
Lillicrap, T.: A simple neural network module for relational reasoning. In: Advances
in Neural Information Processing Systems 30. pp. 4967–4976 (2017)

25. Zhang, A., McAllister, R., Calandra, R., Gal, Y., Levine, S.: Learning invariant
representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742 (2020)

26. Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893 (2018)

Regular papers BNAIC/BeneLearn 2021

334


