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ABSTRACT

Recent years have seen the application of deep reinforcement learn-
ing techniques to cooperative multi-agent systems, with great em-
pirical success. In this work, we empirically investigate the rep-
resentational power of various network architectures on a series
of one-shot games. Despite their simplicity, these games capture
many of the crucial problems that arise in the multi-agent setting,
such as an exponential number of joint actions or the lack of an
explicit coordination mechanism. Our results quantify how well
various approaches can represent the requisite value functions, and
help us identify issues that can impede good performance.
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1 INTRODUCTION

In this paper, we focus on value-based multi-agent reinforcement
learning (MARL) [2, 5, 6, 14, 20, 24] approaches for cooperative
multi-agent systems (MASs) [10, 12, 22, 26, 29]. Value-based single-
agent RL methods use (deep) neural networks to represent the
action-value function Q(s, a; 8) to select actions directly [17] or as
a ‘critic’ in an actor-critic scheme [13, 16]. Current deep MARL
approaches are either based on the assumption that the joint-action
value function Q(s, a) can be represented efficiently by neural net-
works (when, in fact, the exponential number of joint actions usually
makes a good approximation hard to learn and scales poorly in
the number of agents [4]), or that it suffices to represent individual
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action values Qj(s;j, a;) [15, 25], that are known to be hard to learn
because of non-stationarities from the perspective of a single agent
due to the simultaneous learning of the others [4, 25, 28].

To overcome these difficulties and be able to learn useful repre-
sentations while not incurring excessive costs, a middle ground is
to learn factored Q-value functions [7, 8], which represent the joint
value but decompose it as the sum of a number of local components,
each involving only a subset of the agents.

This paper examines the representational capacity of these ap-
proaches by studying the accuracy of the learned Q-function ap-
proximations Q, as recently factored approaches have shown some
success in deep MARL [20, 23]. We consider the optimality of the
greedy joint action, which is important when using Q to select ac-
tions, and the distance to optimal value AQ = |Q — 90l. Minimising
AQ is important for deriving good policy gradients in actor-critic
architectures and for sequential value estimation in any approach
(such as Q-learning) that relies on bootstrapping.

To minimise confounding factors, we focus on one-shot (i.e., non-
sequential) problems [19] that require a high level of coordination.
Despite their simplicity, these one-shot games capture many of
the crucial problems that arise in the multi-agent setting, such
as an exponential number of joint actions. Thus, assessing the
accuracy of various representations in these games is key step
towards understanding and improving deep MARL techniques.

2 ACTION-VALUE FUNCTIONS FOR MARL

In many problems, the decision of an agent is influenced by those
of only a small subset of other agents [8, 9] and thus the joint
action-value function Q(a) can be represented as a factorization,
i.e. a sum of smaller action-value functions Q. (a.) defined over a
coordination graph [7, 11, 21] describing these influences. However,
there are many cases in which the problem itself is not perfectly
factored according to such a graph, or the underlying factorization
may be unknown beforehand. In these cases, however, it can still
be useful to resort to an approximate factorization [8]:

Q(a) ~ Q@) = )" Qe(ac), (1)



obtained by considering a decomposition of the original function
into a desired number of local approximate terms Q. (ac), thus
forming an approximation Q of the original action-value function.
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Figure 1: Example coordination graphs for: (a) random par-
tition, (b) overlapping factors, (c) complete factorization.

We investigate four different coordination graph structures used
to approximate the action-value function:

Single agent decomposition [9]: each agent i is represented by an
individual neural network and computes its own individual action-
values Qi(ai), one for each output unit, based on its local action a;.
This corresponds to the value decomposition networks from [23] !

Random partition: agents are randomly partitioned to form fac-
tors of size f, with each agent i in the team D involved in only one

factor, resulting in D1 factors.

Overlapping factors: a fixed number of factors is picked at random
from the set of all possible factors of size f.

Complete factorization: each agent i is grouped with every possi-
ble combination of the other agents in the team D\ i to form factors
of size f, resulting in P factors.

SUDI=f)!

In each of the investigated factorizations, each factor is repre-
sented by an individual neural network that represents local action-
values O, (a.), using an output unit for each on them, for a certain
factor e, where a, is the local joint action of agents in factor e. We
consider factors of size f € {2,3}. Also, a joint learner with an
exponential number of output units is used as a baseline.

3 EXPERIMENTS

We investigate the representations obtained with the proposed fac-
torizations on a series of challenging one-shot coordination games
with n = 6 agents that do not present an explicit decomposition of
the reward function Q(a) (non-factored games), and then on two
factored games. Complete results and plots for all the proposed
games are presented in the full-length paper available online [3].

Here, we are reporting results for only two of them: the non-
factored Climb Game [27], known to enforce a phenomenon called
relative overgeneralization that pushes the agents to underestimate
a certain action even if it is optimal when perfectly coordinating
on it, and a one-shot version of the factored game Aloha [18], in
which neighbouring agents in the coordination graph can interfere
with agents’ actions.

Table 1 presents the accuracy using various measures of the
investigated representations on these two problems in terms of
!n the full length version of this paper [3], we call this approach the factored Q-
function approach. There, we also investigate another approach called the mixture

of experts approach [1], which, in the case of one agent per factor, corresponds to
independent learners [25].

Model ~ Mean MSE on Optimal Value loss Boltzmann Correctly Kendall 7
square optimal actions value loss ranked
error actions found

Climb game (728 joint actions, 1 optimal)

Joint  0.17+0.1 18.45+4.9 0£0 2.70£0.9 1.52+0.3 727+1 1.00+0.0
F1 0.58+0.0 52.29+£0.1 00 3.00£0.0 2.16£0.0 726 £0 0.98+0.0
F2R  0.52+0.0 40.95+0.0 0£0 3.00£0.0 2.06£0.0 726 £0 0.98+0.0
F3R  0.44+0.0 36.51+0.2 0+£0 3.00£0.0 1.92+0.0 726 £0 0.98+0.0
F2C 0.25+0.0 7.86+0.1 1+0 0.00£0.0 1.40+0.0 729+0 1.00+0.0
F3C  0.17+0.0 70.77+0.7 0+£0 3.00£0.0 0.96+0.0 726 £0 0.98+0.0
F20  0.45+0.0 30.83+0.1 0+0 3.00£0.0 1.94+0.0 726 £0 0.98+0.0
F30  0.30+£0.0 28.89+1.9 0+£0 3.00£0.0 1.54+0.0 726 £0 0.98+0.0

Aloha (64 joint actions, 2 optimal)

Joint  1.13+0.0 0.00£0.0 2+0 0.00£0.0 0.08+0.0 51+1 0.88+0.0
F1 4.78+0.0 50.93+0.1 0+0 6.00£0.0 4.04+0.0 27+1 0.67+0.0
F2R  4.05+0.4 35.00£7.0 0+0 5.00£1.3 3.69+0.4 22+4 0.70+0.0
F3R 3.16£0.5 20.64+4.6 0%0 4.20+1.4 3.23+£0.9 26+4 0.74+0.0
F2C  0.91£0.0 0.14+£0.0 2£0 0.00£0.0 —0.04£0.0 42+0 0.89+0.0
F3C  0.07+0.0 0.14+£0.0 2£0 0.00£0.0 0.22£0.0 64+0 1.00+0.0
F20  3.27+0.3 20.63+3.0 0£0 4.40£1.2 3.24£0.5 23+4 0.74+0.0
F30  1.46+0.3 3.55%1.3 1+1 0.80£1.3 1.19+0.4 29+5 0.83+0.0

Table 1: Accuracy results for two of the investigated games.

reconstruction error, action ranking and action selection. We report
mean values and standard errors across 10 runs. Some of our main
findings are:

o There are pathological examples where all types of factorization
result in selecting the worst possible joint action. Given that only
joint learners seem to be able to address such problems, currently
no scalable deep RL methods for dealing with those seem to exist.

e Beyond those pathological examples, ‘complete factorizations’ of
modest factor size yield near perfect reconstructions and rankings
of the actions, also for non-factored action-value functions, while
exhibiting better scaling behaviour.

e For these more benign problems, random overlapping factors
also achieve excellent performance.

4 CONCLUSIONS

In this work, we investigated how well neural networks can rep-
resent action-value functions arising from multi-agent systems.
This is an important question since accurate representations can
enable taking (near-) optimal actions in value-based approaches,
and computing good gradient estimates in actor-critic methods. In
this paper, we focused on one-shot games as the simplest setting
that captures the exponentially large joint action space of MASs.
We compared a number of existing and new action-value network
factorizations and learning approaches.

Our results highlight the difficulty of compactly representing ac-
tion values in problems that require tight coordination, but indicate
that using higher-order factorizations with multiple agents in each
factor can improve the accuracy of these representations substan-
tially. We also demonstrate that there are non-trivial coordination
problems - some without a factored structure - that can be tack-
led quite well with simpler factorizations. Intriguingly, incomplete,
overlapping factors perform very well.
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