
Decentralized MCTS via Learned Teammate Models

Aleksander Czechowski and Frans A. Oliehoek
Delft University of Technology

{a.t.czechowski, f.a.oliehoek}@tudelft.nl

Abstract
Decentralized online planning can be an attractive
paradigm for cooperative multi-agent systems, due
to improved scalability and robustness. A key diffi-
culty of such approach lies in making accurate pre-
dictions about the decisions of other agents. In this
paper, we present a trainable online decentralized
planning algorithm based on decentralized Monte
Carlo Tree Search, combined with models of team-
mates learned from previous episodic runs. By only
allowing one agent to adapt its models at a time, un-
der the assumption of ideal policy approximation,
successive iterations of our method are guaranteed
to improve joint policies, and eventually lead to
convergence to a Nash equilibrium. We test the effi-
ciency of the algorithm by performing experiments
in several scenarios of the spatial task allocation en-
vironment introduced in [Claes et al., 2015]. We
show that deep learning and convolutional neural
networks can be employed to produce accurate pol-
icy approximators which exploit the spatial features
of the problem, and that the proposed algorithm im-
proves over the baseline planning performance for
particularly challenging domain configurations.

1 Introduction
The ability to compute or learn plans to realize complex tasks
is a central question in artificial intelligence. In the case of
multi-agent systems, the coordination problem is of utmost
importance: how can teams of artificial agents be engineered
to work together, to achieve a common goal? A decentral-
ized approach to this problem has been adopted in many tech-
niques [Durfee and Zilberstein, 2013]. The motivation comes
from human collaboration: in most contexts we plan individ-
ually, and in parallel with other humans. Moreover, decen-
tralized planning method can lead to a number of benefits,
such as robustness, reduced computational load and absence
of communication overhead [Claes et al., 2017].

Decentralized planning methods were applied in context of
multiplayer computer games [Jaderberg et al., 2019], robot
soccer [Aşık and Akın, 2012], intersection control [Vu et
al., 2018] and autonomous warehouse control [Claes et al.,
2017], to name a few. The essential difficulty of this paradigm

Figure 1: Robots cleaning a factory floor.

lies in solving the coordination problem. To naively deploy
single-agent algorithms for individual agents inevitably leads
to the tragedy of the commons; i.e. a situation where an ac-
tion that seems optimal from an individual perspective, is sub-
optimal collectively. For instance, consider a relatively sim-
plistic instance of a spatial task allocation problem in which
a team of n robotic vacuum cleaners needs to clean a fac-
tory floor, as in Figure 1. Assuming that a robot solves its
own traveling salesman problem [Lin, 1965] would result in
optimal path planning if it was alone in the factory; but col-
lectively it could lead to unnecessary duplication of resources
with multiple robots heading to the same littered area. On
the other hand, joint optimization of all actions results in an
intractable problem, that is not scalable to large networks of
agents. Among some of the heuristic methods to deal with
such problems proposed by researchers, communication [Wu
et al., 2009], higher level coordination orchestration [Borrajo
and Fernández, 2019], and co-agent modelling [Albrecht and
Stone, 2018a] were previously explored in literature.

The cooperative decentralized planning problem can be
posed in different settings; within this paper we focus on
simulation-based planning, where each agent in the team has
access to a simulator of the environment, which they can use
to sample states and rewards, and evaluate the value of avail-
able actions, before committing to a particular one. The in-
herent difficulty of decentralized simulation-based planning
is that in order for an individual agent to sample from the
simulator and estimate the potential future rewards, it needs
to provide joint actions of themselves and their teammates.
However, in a live planning scenario, where each of the agents
chooses actions according to their own simulation-based al-
gorithm, it is not possible to know a priori what actions team-
mates actually execute.

There are two basic approaches to deal with this. If all



agents are deployed with the same algorithm, they can evalu-
ate all joint actions and choose their respective individual ac-
tion; however this approach is costly, and the computational
difficulty grows exponentially with the number of agents. A
different approach is to make assumptions on other agents,
and supply the simulator with an educated guess on their ac-
tions, given the common observed state. Such solution was
used in [Claes et al., 2017], where heuristic policies were de-
signed for a domain modelling the task allocation problem in
a factory floor.

In this paper, we build upon the second paradigm. We in-
troduce a decentralized planning method of Alternate max-
imization with Behavioural Cloning (ABC). Our algorithm
combines the ideas of alternate maximization, behavioral
cloning and Monte Carlo Tree Search (MCTS) in a previ-
ously unexplored manner. By the ABC method, the agents
learn the behavior of their teammates, and adapt to it in an
iterative manner. The high-level overview of our planning-
execution loop for a team of agents in a given environment
can be represented in the following alternating steps:

1. We perform a number of episode simulations with agents
acting according to their individual MCTS; each agent
has an own simulator of the environment and models of
its teammates;

2. The data from the simulations (in the form of state-
action pairs for all agents) is used to train new agent be-
haviour models; these are in turn inserted into the MCTS
simulator of one of the agents.

We refer to each successive iteration of above two steps as a
generation. In each generation we chose a different agent for
the simulator update.

We prove that if original policies have been perfectly repli-
cated by learning, we are guaranteed to increase the mean
total reward at each step, and eventually converge to a Nash
equilibrium. We also demonstrate the empirical value of our
method by experimental evaluation in the previously men-
tioned factory floor domain.

2 Related Work
In this paper, we take a so-called subjective perspec-
tive [Oliehoek and Amato, 2016] of the multi-agent sce-
nario, in which the system is modeled from a protagonist
agent’s view. The simplest approach simply ignores the other
agents completely (some-times called ‘self-absorbed’ [Claes
et al., 2015]). On the complex end of the spectrum, there
are ‘intentional model’ approaches that recursively model
the other agents, such as the recursive modeling method
[Gmytrasiewicz and Durfee, 1995], and interactive POMDPs
[Gmytrasiewicz and Doshi, 2005; Doshi and Gmytrasiewicz,
2009; Eck et al., 2019]. In between lie other, often simpler,
forms of modeling other agents [Hernandez-Leal et al., 2017;
Albrecht and Stone, 2018a; Hernandez-Leal et al., 2019].
Such models can be tables, heuristics, finite-state machines,
neural networks, other machine learning models, etc. Given
that these do not explicitly model other agents, they have been
called ‘sub-intentional’, however, as demonstrated by [Rabi-
nowitz et al., 2018] they can demonstrate complex charac-

teristics associated with the ‘theory of mind’ [Premack and
Woodruff, 1978].

In our approach we build on the idea that (sub-intentional)
neural network models can indeed provide accurate models of
behaviors of teammates. Contrary to [Claes et al., 2017], who
couple MCTS with heuristics to predict the teammates, this
makes our method domain independent as well as providing
certain guarantees (assuming ideal policy replication by func-
tion approximators). Recursive methods, such as the interac-
tive particle filter [Doshi and Gmytrasiewicz, 2009] also give
certain guarantees, but are typically based on a finite amount
of recursion, which means that at the lowest level they make
similar heuristic assumptions. Another drawback is their very
high computational cost, making them very difficult to apply
on-line.

In [Kurzer et al., 2018] decentralized MCTS is combined
with macro-actions for automated vehicle trajectory planning.
The authors however assume heuristic (so not always accu-
rate) models of other agents and do not learn their actual poli-
cies. [Best et al., 2016] uses parallel MCTS for an active
perception task and combines it with communication to solve
the coordination problem; [Li et al., 2019] explores similar
ideas and combines communication with heuristic teammate
models of [Claes et al., 2017]. Contrary to both of these
papers, we assume no communication during the execution
phase. Similarly, [Golpayegani et al., 2015] uses MCTS in
a parallel, decentralized way, but includes a so-called Col-
laborative Stage at each decision making point, where agents
can jointly agree on the final decision. Other research has
tried to make joint-action MCTS more scalable by exploiting
factored state spaces [Amato and Oliehoek, 2015]. In our set-
ting, we do not make any assumptions about the dynamics of
the environment.

Finally, we would like to point out similarity of our ap-
proach with AlphaGo & AlphaZero – the computer programs
designed to master the game of Go in a highly acclaimed re-
search by Deepmind [Silver et al., 2016; ?]. There, neural
network models were used together with self-play to guide
MCTS, by providing guesses of opponents gameplay and es-
timates on state-action value functions. However, both Al-
phaGo & AlphaZero expand opponents’ actions in the search
tree. By our approach, we are able to incorporate the actions
of other agents in the environment simulator so they do not
contribute to the branching factor of the decision tree, which,
in turn, allows us to scale the method to several agents.

3 Background

A Markov Decision Process (MDP) is defined as a 5-tuple
M := (S,A, T,R, γ), where S is a finite set of states, A is a
finite set of actions, T : S×A×S → [0, 1] are probabilities of
transitioning between states for particular choices of actions,
R : S × A → R is a reward function and γ ∈ [0, 1] is the
discount factor. The policy is a mapping π : S → A, which
represents an action selection rule for the agent. The policy is
paired with the environment to form a Markov chain over the
state space defined by the sequence of probability distribution
functions which models the process of decision making. The



value of a state is given by

VM,π(s0) =
∑
t

γtE(Rt|π, s0) (1)

One is typically interested in finding the optimal policy,
π∗,M := argmaxπ V

M,π . The value of action a in a given
state s is given by the Q function

QM,π(s, a) := R(s, a) + γ
∑
s′

T (s′|s, a)VM,π∗(s′). (2)

By the Bellman optimality principle, the actions with
highest Q values form the optimal policy π∗(s, a) =
argmaxa∈AQ(s, a).

In a Multi-agent Markov Decision Process (MMDP) with
n agents the action space is factored in n components: A =
A1 × · · · × An. Each component Ai describes the indi-
vidual actions available to the agent i and the policies can
be represented as products of individual agent policies π =
(π1, . . . , πn). We emphasize that an MMDP is fully coopera-
tive and all agents receive the same reward signalR (contrary
to e.g. stochastic games, where the rewards are individual).
For our considerations, it will be useful to introduce the i-th
self-absorbed projection of an MMDP M = (S,A, T,R, γ),
after having fixed all individual policies besides πi, as a single
agent MDP:

Πi(M,π−i) := (S,Ai, Ti, R, γ) (3)

where π−i denotes (fixed) policies of all agents except for
agent i and the transitions and the rewards are induced by
compositions of T,R with π−i.

The problem of finding solutions to an MMDP can be
viewed as a collaborative normal form game [Claus and
Boutilier, 1998; Peshkin et al., 2000], where the agents are
players, the individual policies are strategies, and the pay-
offs for a joint policy π and an initial state s0 are given by
VM,π(s0), and uniform to all players. A joint policy is a Nash
equilibrium if and only if no higher payoff can be achieved by
changing only one of the individual policies forming it. The
optimal policy1 π∗,M is a Nash equilibrium, however there
may be multiple other (suboptimal) Nash equilibria in the sys-
tem.

The question of finding an optimal joint policy can be con-
sidered in the simulation-based planning context. There, it
is no longer assumed that we have access to the full proba-
bilistic model of the domain. Instead, one is supplied with
a system simulator, i.e. a method for sampling new states s′
and rewards r based on states s and joint actions a, according
to the underlying (but otherwise possibly unknown) proba-
bility distribution T and reward function R. In this paper,
we consider the setting of online, decentralized, simulation-
based planning, where the agents need to compute individual
best responses π∗i (s) over states s ∈ S they encounter in the
episode.

1For ease of exposition of the theoretical background, we assume
it to be unique; this is not a restriction on the class of MDPs as one
can always perturb the reward function in an otherwise negligible
fashion to make policy values disjoint.

We focus on one particularly effective and popular plan-
ning method: the MCTS algorithm combined with the Upper
Confidence Trees (UCT) tree exploration policy. This search
method uses Monte Carlo simulations to construct a tree of
possible future evolutions of the system. The tree consists
of nodes representing actions taken by the agent, and the re-
sulting, sampled states encountered in the environment. Each
node stores statistics that approximate either the state values
or the Q values of actions. The single iteration of algorithm
execution is split into four parts. First, the tree is traversed
according to the tree policy (selection). Then, new nodes are
created by sampling an action and the resulting state (expan-
sion). Next, a heuristic policy is used to complete the episode
simulation (rollout). Finally, the results are stored in the vis-
ited tree nodes (backpropagation).

The selection step is performed by choosing a node k
with an action a, which maximizes the formula Q̃(s, a, t) +

c
√

logNk
nk

, where Q̃ is a sample-based estimator of the Q
value, Nk is the amount of visits at the parent node of node
k, and nk is the amount of visits to the node. All of these
three values are updated at each backpropagation step. The
constant c > 0 is the exploration constant; in theory, for re-
wards in [0, 1] range, it should be equal to

√
2. In practice the

constant is chosen empirically [Kocsis and Szepesvári, 2006].
The algorithm is initialized and performed at each time step

of simulation, for either a predefined, or time-limited amount
of iterations. Then, the best action is selected greedily, based
on the approximate Q-values of child nodes of the root node.
Definition 1. We denote the policy generated by action selec-
tion according to the MCTS algorithm with UCT in an MDP
M by MCTS(M)(= MCTS(M,C, l, ρ)), with C > 0 be-
ing the exploration constant, l ∈ N the number of UCT itera-
tions and ρ – a rollout policy.

For a sufficiently large number of iterations l = l(C,M)
the MCTS algorithm approximates the real Q-values of each
action node with arbitrary accuracy; and therefore it consti-
tutes the pure, optimal policy: MCTS(M,C, l, ρ) = π∗,M ,
c.f. [Chang et al., 2005].

4 Alternating Maximization with Behavioral
Cloning

In this section we describe the ABC algorithm and prove its
convergence guarantees.

4.1 The Hill Climb
A common method for joint policy improvement in multi-
agent decision making is the so-called hill climb, where
agents alternate between improving their policies (c.f. [Nair et
al., 2003]). At each iteration of the method (i.e. generation),
one of the agents is designated to compute its best response,
while the other agents keep their policies fixed. The hill climb
method comes with performance guarantees, in particular the
joint rewards are guaranteed to (weakly) increase in subse-
quent generations.

Consider an MMDP on n agents M = (S,A, T,R), and
let (π1, . . . , πn) denote the individual components of a joint
policy π.



Definition 2. For each i ∈ {1, . . . , n} we define the i-th best
response operator BRi from the joint policy space to itself
by:

BRi (π) :=
(
π1, . . . , πi−1, π

∗,Πi(M,π−i)
i , πi+1, . . . , πn

)
.

(4)
Lemma 1. The following inequality holds:

VM,BRi(π)(s) ≥ VM,π(s), ∀s, i. (5)

Moreover, VM,BRi(π)(s) = VM,π(s) ∀s implies that π is a
fixed point of BRi.

Proof. For all s ∈ S:

VM,BRi(π)(s) = V Πi(M,π−i),(BRi(π))i(s)

= V Πi(M,π−i),π
∗,Πi(M,π−i)
i (s)

≥ V Πi(M,π−i),πi(s)

= VM,π(s).

(6)

If the above are equal for all s ∈ S, then πi = π
∗,Πi(M,π−i)
i .

Applications of Lemma 1 to simulation-based planning can
seem counter-intuitive, and very much in spirit of the apho-
rism all models are wrong, but some are useful:
Remark 1. Consider the following composition
BRi(BRj(π)) with i 6= j for some joint policy π; the
interpretation is that agent j first adapts to the policies π−j ,
including the i-th agent’s policy πi; then agent i adapts to the
policies (BRj(π))−i. The subsequent application of BRi on
BRj(π) is likely to update agent i’s policy, which means that
the assumption agent j made to compute its best-response
(namely that i uses πi) is no longer true. Nevertheless,
as shown by Lemma 1, the value of the joint policy still
increases.
Definition 3. Let σ be a permutation on the set {1, . . . , n}.
We define the joint response operator by JRσ := BRσ(n) ◦
· · · ◦BRσ(1).
Corollary 1. For all permutations σ and all initial joint poli-
cies the iterative application of operator JRσ converges to a
Nash equilibrium. Since the policy space is finite, the conver-
gence is achieved in finite time.

Proof. To make the argument easier to follow, we will as-
sume that σ = id, and denote JRid as JR. For the pur-
pose of this proof we denote the N -th composition of JR by
JRN , for any N ∈ N. Since VM,JR(·)(s) is non-decreasing
as a function of joint policies, and the policy set is finite,
for any joint policy π there exists an N ∈ N such that
VM,JR(N+1)(π)(s) = VM,JRN (π)(s) ∀s. We will show that
πN := JRN (π) is a Nash equilibrium. Since V increases
along trajectories generated by BRi, we have

VM,JRN (π)(s) = VM,BR1(JRN (π))(s) ∀s. (7)

Agent 1 has no incentive to deviate (c.f. the second part of
Lemma 1), so

JRN (π) = BR1(JRN (π)). (8)

Inputs:
-Model M
-initial heuristic policies πh,0 = (πh,01 , . . . , πh,0n )
-MCTS parameters l, C
Start:
∀i : π0

i := MCTS
(

Π1(M,πh,0−i ), C, l, πh,0i

)
for g in 1:nGenerations do

perform simulation with πg−1, collect data d
∀i : train new teammate models πh,gi ≈ πgi
(by Algorithm 2 with data d)
∀i : πgi := πg−1

i //copy previous policies
j := (gmodn) + 1 //agent to update
πgj := MCTS

(
Πj

(
M,πh,g−1

−j

)
, C, lπh,g−1

j

)
end
Algorithm 1: The ABC policy improvement pipeline.

By an inductive argument

BRi(JR
N (π)) = JRN (π). (9)

for all i ∈ {1, . . . , n}, which concludes the proof.

4.2 Behavioral Cloning
In an online planning setting, accessing the policies of other
agents can be computationally expensive, especially if the
policies of individual agents are formed by executing an al-
gorithm which evaluates the Q values “on-the-go” – such as
in MCTS. To address this issue, we propose to use machine
learning models.

More precisely, we divide our policy improvement pro-
cess into generations; at each generation we update models
in the simulator of one of our agents with samples of other
agents’ policies from the previous generations. Through ma-
chine learning we are able to extrapolate and to give predic-
tions of actions for states that were unseen during the previ-
ous simulation runs (i.e. were never explored by the policies
of previous generations). By our method, each agent i uses
MCTS to conduct its own individual planning in the environ-
ment Πi(M,πh−i), where πh−i is a model of policies of other
agents. Therefore, the planning is fully decentralized, and no
communication is needed to execute the policies.

4.3 The ABC Pipeline
Our policy improvement pipeline based on MCTS is pre-
sented in pseudocode in Algorithm 1. The behavioral cloning
algorithm is presented in pseudocode in Algorithm 2.

Since MCTS with UCT converges to actual Q values, we
can conclude that for sufficient number of UCT iterations our
algorithm indeed executes the best responses to the assumed
policies:
Corollary 2. Let πg be as in Algorithm 1. For l large
enough πgi = π∗,Πi(M,πh,g−1

−i ), and as consequence πg =
BRi(π

h,g−1).
If our machine learning model has enough data and degrees

of freedom to perfectly replicate policies, from Lemma 1 and
Corollary 1 we conclude that the procedure improves joint
policies and eventually converges to a Nash equilibrium:



Inputs:
Data d = (sgi , a

g
i )i,g of state-action pairs indexed by

agents i, in generation g;
neural network policy models πh,gi (θ0, ·) : S → [0, 1]Ai ,
with softmax outputs over the action space;
Start:
for i in 1:nAgents do

Convert states sgi to arrays;
One-hot-encode actions agi ;
Initialize neural network policy approximators with
weights θ := θ0;
for e in 1:nTrainingEpochs do

draw batch Bg ;

minimize −
∑

(sgi ,a
g
i )∈Bg a

g
i log

(
πh,gi (θ, s)

)
over θ (cross-entropy);

end
end

Algorithm 2: The algorithm for training policy approxima-
tors.

Theorem 1. For l large enough and under assumption
πh,g = πg, ∀g, the joint policy value V π

g,M (s0) is non-
decreasing as a function of g, and strongly increasing until it
reaches the Nash equilbrium. For N large enough, πN is a
Nash equilibrium.

We emphasize that it is essential that only one agent up-
dates its assumed policies at each generation. If two or more
agents would simultaneously update their policies, they could
enter an infinite loop, always making the wrong assumptions
about each other in each generation, and never achieving the
Nash equilibrium.

We remark that in our algorithm we also leverage a learned
model of agents’ own behavior by employing it in MCTS roll-
out stage.

5 Experiments
Our work is a natural extension to [Claes et al., 2015;
Claes et al., 2017], we perform experiments on a slightly
modified version of the Factory Floor domain introduced
therein. The baseline for our experiments is given by the cur-
rent state of the art planning method for this domain: individ-
ual MCTS agents with heuristic models of other agents [Claes
et al., 2017], and it also serves as initialization (generation 0)
of the ABC policy iterator. Therefore, the goal of the exper-
iments is to empirically confirm the policy improvement via
ABC. Any improvement over the 0th generation shows that
we have managed to beat the baseline.

5.1 The Factory Floor Domain
The domain consists of a gridworld-like planar map, where
each position can be occupied by (cleaning) robots and tasks
(e.g. litter). Multiple robots and/or tasks can be in the same
position. Each robot is controlled by an agent, and at each
time step an agent can perform either a movement action
UP,DOWN,LEFT,RIGHT , which shifts the position of

the robot accordingly, or a cleaning action ACT , which re-
moves one task at the current position. Attempted actions
may succeed or not, according to predefined probabilities.
The reward collected at each time step is the number of tasks
cleaned by the robots. At the beginning of the simulation
there can already be some tasks on the map, and, as the simu-
lation progresses, more tasks can appear, according to prede-
fined probabilities.

5.2 Initial Heuristic Models
Below, we describe the heuristic policies πh,0i , which are sup-
plied as the model for MCTS agents in generation 0 (the base-
line). At each decision step, i-th heuristic agent acts accord-
ing to the following recipe:

1. it computes the social order of the corresponding robot
among all robots sharing the same position; the social
ordering function is predefined by the lexicographic or-
der of unique robot identifiers.

2. It evaluates each possible destination τ by the following
formula:

NV (τ, roboti) =

{
−∞ if no tasks at τ,

#tasks
dist(τ,roboti)

;
(10)

3. It assigns the k-th best destination as the target destina-
tion, where k is the computed social order of the cor-
responding robot (e.g. if it is the only robot at a given
position, then k = 1). Therefore, the social order is used
to prevent several agents choosing the same destination.

4. It chooses action ACT if it is already at the target desti-
nation; and otherwise it selects a movement action along
the shortest path to the destination.

5.3 MCTS Settings
We scale the exploration constant C by the remaining time
steps in the simulation, i.e. c = c(t) := C ∗ (H − t), to
account for the decreasing range of possible future rewards,
as recommended in [Kocsis and Szepesvári, 2006]. As in the
baseline, we also use sparse UCT [?] to combat the problem
of a large state space; that means that we stop sampling child
state nodes of a given action node from the simulator after we
have sampled a given amount of times; instead we sample the
next state node from the existing child state nodes, based on
frequencies with which they occured. In all our experiments,
we set this sampling limit to 20. As in the baseline, the agents
are awarded an additional do-it-yourself bonus of 0.7 in sim-
ulation, if they perform the task themselves; this incentivizes
them to act, rather than rely on their teammates. Each agent
performs 20000 iterations of UCT to choose the best action
for their robot.

5.4 The Behavioral Cloning Model
Since the domain has spatial features, we opted to use a con-
volutional neural network as the machine learning method of
choice for policy cloning.

As input we provide a 3-dimensional tensor with the width
and the height equal to the width and the height of the Factory
Floor domain grid, and with n + 2 channels (i.e. the amount



of robots plus two). We include the current time step informa-
tion in the state. The 0-th channel layer is a matrix filled with
integers representing the amount of tasks at a given position.
The tasks have finite execution time, and the current time step
affects the optimal decision choice; therefore we encode the
current time step by filling it in the entries of the 1st channel.
Finally, for i = 1, . . . , n, the 2 + i-th channel is encoding the
position of robot i, by setting 1 where the robot is positioned
and 0 on all other fields.

Such state representation is fed into the neural network
with two convolutional layers of 2x2 convolutions followed
by three fully connected layers with 64, 16 and 5 neurons
respectively. We use the rectified linear unit activation func-
tions between the layers, except for the activation of the last
layer, which is given by the softmax activation function. The
network has been trained using the categorical cross entropy
function as the loss function, and Adam as the optimiza-
tion method [Kingma and Ba, 2014]. The action assigned
to the state during MCTS simulations is corresponding to the
argmax coordinate of the softmax probabilities. The time re-
quired to train the neural network is insignificant, compared
to the time needed to collect data from MCTS simulations.

5.5 Domain Initialization
We tested our method in four experiments. In all experimen-
tal subdomains, the movement actions are assumed to suc-
ceed with probability 0.9, and the ACT action is assumed to
succeed always. In all configurations the horizon H is set to
ten steps, and the factor γ is set to 1, so there is no discount-
ing of future rewards. We present the initial configuration
of the experiment and the corresponding reward plots in Fig-
ures 2, 3, and 4. Letters R indicate robot positions, and the
numbers indicate the amount of tasks at a given position – for
a fixed task placement; or the probability that a task appears
at a given position – for dynamic task placement. We provide
plots of the results, that contain the mean average reward for
each generation, together with 95% confidence interval bars.

We chose domain configurations which, due to the location
of tasks, require high level of coordination between agents.
In particular, we created the domains where we expect that
the policies of the baseline are suboptimal. For more generic
domains, the decentralized MCTS with heuristic models is al-
ready close to optimal, and we do not expect much improve-
ment. In subdomains with fixed positions of tasks we train the
agents for five generations. In subdomains, where the tasks
are assigned dynamically, we train the agents for three gener-
ations, as for higher amount of iterations we sometimes ob-
served worsening performance, which we attribute to imper-
fect learning process due to high stochasticity of the domain.
Two robots. Our first subdomain is a trivial task: a 6x4
map, which has eight tasks to be collected. Even in such
a simple scenario, the baseline does not perform well, be-
cause both robots make the assumption that their colleague
will serve the task piles of 2’s and head for the 1s, achieving
a mean reward of ≈ 5.5 (0th generation). The exploration
parameter C is set to 0.5, and the number of simulations at
each generation nSim to 320. Already in the first generation,
agent 2 learns the policy of agent 1 and adapts accordingly,
which results in an increase of the mean collected reward to

Figure 2: Left: The two robots experiment map. Right: Mean re-
wards of the experiment with two robots. Each generation represents
320 simulations.

Figure 3: Left: The four robots experiment map with fixed task al-
location. All robots start in the middle. Right: Mean rewards of the
four robots experiment with fixed task positions. Each generation
represents 180 simulations.

≈ 7.9. The average collected reward stabilizes through the
next generations, which suggests that our method reached a
Nash equilibrium (and in fact a global optimum, given that
the maximal reward that could have been obtained in each
episode is 8).

Four robots, fixed tasks. Our second subdomain is a 7x7
map which has 22 tasks to be collected by four robots. The
exploration parameter C is increased to 1.0 – to account for
higher possible rewards, and the number of simulations at
each generation nSim is decreased to 180 – to account for
longer simulation times. All robots start from the middle of
the map. The baseline method again underpeforms, as the
robots are incentivized to go for the task piles of 3’s and 4’s,
instead of spreading in all four directions. After the applica-
tion of the ABC algorithm the robots learn the directions of
their teammates, spread, and a near optimal learning perfor-
mance is achieved, see Figure 3.

Four robots, dynamic tasks. For the final two experiments
we chose the same 7x7 map as previously, but this time tasks
appear dynamically: two or three new tasks are added ran-
domly with probability 0.9 at each time step during the pro-
gram execution in one of the marked places. All the other
experiment parameters remain unchanged. The confidence
intervals are wider, due to additional randomness. Neverthe-
less, for the first three generations we observed an improve-
ment over the 0th generation, which we attribute to the fact
that the agents have learnt that they should spread to cover
the task allocation region, similarly as in the experiment with
fixed task location.



Figure 4: Top: The four robots experiment map with dynamic task
allocation. All the robots start in the middle. Bottom: Mean rewards
of the dynamic task assignment experiment with four robots and two
(left) / three (right) tasks appearing at each time step – data from
90/180 simulations respectively.

6 Conclusions
We have proposed a machine-learning-fueled method of im-
proving teams of MCTS agents. Our method is grounded in
the theory of alternating maximization and, given sufficiently
rich training data and suitable planning time, it is guaranteed
to improve the initial joint policies and reach a local Nash
equilibrium. We have demonstrated in experiments, that the
method allows to improve team policies for spatial task allo-
cation domains, where coordination is crucial to achieve op-
timal results.

An interesting direction of future work is to search for the
global optimum of the adaptation process, rather than a lo-
cal Nash equilibrium. To that end, one can randomize the
orded in which agents are adapting, find multiple Nash equi-
libria, and select the one with highest performance. Another
research avenue is to extend the ABC method to environ-
ments with partial information (Dec-POMDPs), where the
agents need to reason over the information set available to
their teammates.
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