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Abstract

One of the main challenges of multi-agent learn-
ing lies in establishing convergence of the algo-
rithms, as, in general, a collection of individual,
self-serving agents is not guaranteed to converge
with their joint policy, when learning concurrently.
This is in stark contrast to most single-agent envi-
ronments, and sets a prohibitive barrier for deploy-
ment in practical applications, as it induces uncer-
tainty in long term behavior of the system. In this
work, we apply the concept of trapping regions,
known from qualitative theory of dynamical sys-
tems, to create safety sets in the joint strategy space
for decentralized learning. We propose a binary
partitioning algorithm for verification that candi-
date sets form trapping regions in systems with
known learning dynamics, and a heuristic sampling
algorithm for scenarios where learning dynamics
are not known. We demonstrate the applications
to a regularized version of Dirac Generative Ad-
versarial Network, a four-intersection traffic con-
trol scenario run in a state of the art open-source
microscopic traffic simulator SUMO, and a mathe-
matical model of economic competition.

1 Introduction
In the recent years, enormous progress has been made for
single agent planning and learning algorithms, with agents
matching or exceeding human performance in various tasks
and games [Mnih et al., 2013; Silver et al., 2016]. The
vast success of single agent learning can be partially ex-
plained by robustness and strong convergence properties of
the underlying algorithms in their basic form, such as Q-
learning [Watkins and Dayan, 1992] or policy gradients [Sut-
ton et al., 1999]. Despite wide interest, the same cannot be

Due to space restrictions, the proofs of our theorems and lem-
mas have been postponed to the Supplementary Material, and can
be accessed in the extended version of the paper [Czechowski and
Oliehoek, 2023]. There, we also provide an additional example,
where we find trapping regions in a model of economic competition,
which ensures that none of the competing companies will reduce
their production to zero.

however said for multi-agent learning. Even most basic mod-
els, e.g. replicator learning for normal form games, exhibit
nonconvergence, cyclic or even chaotic behavior [Sato et al.,
2002]. Even worse, it has been shown that in decoupled learn-
ing systems, there can be no learning rule that guarantees con-
vergence to a Nash equilibrium [Hart and Mas-Colell, 2003].
These nonconvergent examples have also been found in more
practical learning problems, such as Generative Adversarial
Networks [Mescheder et al., 2018]. Due to the above limita-
tions, many successful multi-agent learning methods resorted
to using a centralized component, such as centralized critic
in actor-critic learning [Lowe et al., 2017] or meta-solvers
in double-oracle type algorithms like Parallel Nash Mem-
ory [Oliehoek et al., 2006] and Policy Space Response Ora-
cles [Lanctot et al., 2017]. Alternatives in form of decentral-
ized algorithms usually rely on specific assumptions on the
reward structure for convergence, for instance fictitious play
or exploitability descent in zero-sum games [Brown, 1951;
Lockhart et al., 2019].

Despite this undisputed progress in designing convergent
multi-agent algorithms, it can be argued that in practical, real-
world multi-agent scenarios there will be plenty of situations,
where convergence cannot be enforced. One can easily en-
visage a situation, e.g. in automated traffic control and driv-
ing scenarios, or in automated trading, where multiple entities
(be it traffic lights, vehicles, or brokers) follow own learning
protocols for individual reward maximization. Such learning
rules, even though designed to be convergent in static, single-
agent environments, would invariably interfere with one an-
other in a multi-agent setting, sometimes resulting in cyclic,
or divergent outcomes. The lack of convergence guarantees
in such general settings forms a major obstacle for introduc-
tion of online learning systems in practical applications, as it
introduces a lot of uncertainty over what will be the state of
the system, if learning is left unsupervised. Can we never-
theless still establish a type of safety certificates, that would
allow us to conclude that simultaneous learning will not spin
out of control?

In this paper, we suggest a novel approach to address is-
sue. We start from the realization, that convergence is often
not absolutely necessary for reliability. From systems design-
ers perspective, it is often enough to know that learning has
rough stability guarantees – that is, that agents will not leave
a predetermined region of the strategy space during learning.



For a conceptual application, let us consider a traffic light
control network as in Figure 3, where individual traffic light
controllers learn the best balance of green time between the
phases to minimize the waiting time for approaching vehicles.
It is not absolutely necessary that by learning each intersec-
tion reaches a final, static setting, but would be essential that
at all times it gives minimal green time of at least few sec-
onds to each phase, to make sure that no vehicle gets stuck
indefinitely on a red traffic light, and also serve the lingering
pedestrian flows.

We propose a method of a priori verifying these con-
straints, by establishing trapping regions; regions of strat-
egy space, which learning trajectories will never escape. The
idea behind this concept is simple: a candidate set for a trap-
ping region is formed by the constraints imposed by prac-
tical, problem-dependent safety considerations. By verifying
whether such set is forward-invariant for the joint learning op-
erator, we obtain a yes–or–no answer on whether it is safe to
allow multi-agent learning (possibly in a decentralized man-
ner), without breaking these constraints. This method can be
seen an alternative solution concept in systems, where Nash
equilibria are difficult or impossible to reach by learning dy-
namics. Trapping regions are intended to be used as a safety
prerequisite. For instance a road authority could pre-approve
the algorithms of automated road users, by checking whether
their joint policy forms suitable trapping regions – before they
are deployed in real life.

This paper is organized as follows. Section 2 introduces the
setting and necessary preliminaries. In Section 3 we present
the definition of a trapping region, prove several useful the-
orems and lemmas that are useful for their verification for
Lipschitz-continuous learning, and present two algorithms,
for verifying whether given hyperrectangular sets forms a
trapping region, only from the knowledge of learning oper-
ator on the set boundary. The first algorithm, is based on bi-
nary partitioning, and is applicable when learning dynamics
are known analytically and Lipschitz, and we would like to
have a mathematically rigorous guarantee. The second one is
a heuristic algorithm, applicable in scenarios where learning
dynamics can only be sampled, its dependability is directly
correlated to the number of boundary samples taken.

Finally, in Section 4 we introduce two examples, that illus-
trate the applications of trapping regions. The first of our first
of our examples is a toy problem, a simple GAN-like learn-
ing scenario, where gradient learning starting from almost all
points never converges, whereas trapping regions are abun-
dant and easy to find. In our second example we deal with a
practical traffic control problem, where four intersection in a
traffic network adjust their strategies to dispatch traffic in an
optimal manner. For this problem, we construct and verify
a trapping region, which ensures all traffic directions will be
given enough time, when traffic controllers are left to learn
unsupervised.

1.1 Related Work
Trapping regions are well known and standard tool in quali-
tative theory of dynamical systems, e.g. [Meiss, 2007; Bon-
atti, 2006], but to the best of our knowledge have not been
directly applied in learning and control scenarios. The ma-

jority of work on safety guarantees in control theory focuses
on so-called constrained optimization [Altman, 1999]. In the
context of safe reinforcement learning, the focus has been on
designing algorithms that satisfy particular safety constraints,
c.f. [Garcıa and Fernández, 2015] and references therein.
In the multi-agent case, research has been directed towards
methods where an orchestrator [ElSayed-Aly et al., 2021] or
agents individually [Lu et al., 2021] are adapting their behav-
ior to respect the constraints; this has also been the underly-
ing philosophy in the method of barrier functions [Wills and
Heath, 2004; Yang et al., 2020]. There are also strong con-
nections to methods of formal verification methods, in partic-
ular ones based on reachability analysis [Ruan et al., 2018;
Wang et al., 2021].
Relation to Lyapunov Control. Our method shares most
similarities with the ones based on Lyapunov functions,
such as Neural Lyapunov Control [Chang et al., 2019], see
also [Berkenkamp et al., 2017]. There are however several
key differences that we would like to highlight here. Most
importantly, Lyapunov-based methods are only applicable to
(locally) convergent scenarios, as the existence of a Lyapunov
function implies the existence of a locally attracting equilib-
rium of the system. On the other hand, trapping regions are
very well suited to deal with problems, where learning never
converges to a stationary solution. Even if the learning tra-
jectory does not converge, the bounds provided by the trap-
ping region will ensure that they never diverge into unsafe
regions of the joint strategy space. This has strong practi-
cal consequences: a non-convergent learning process with-
out safety guarantees would have to be indefinitely super-
vised, whereas trapping regions ensure that it only explores
safe parts of the strategy space, and does not require supervi-
sion. Dealing with non-stationarity is particularly important
for multi-agent systems, as it was shown e.g. in [Kleinberg
et al., 2011] outcomes of a non-convergent cyclic learning
process can lead to higher social welfare than these of a sta-
tionary Nash; and even worse, often stationarity cannot be
ensured, as some learners can be outside of our control (e.g.
in adversarial scenarios). In Section 4.1, we provide a low-
dimensional example where none of the learning trajectories
converge to the equilibrium point, but trapping regions are
easy to find, c.f. Figure 2.

The second difference comes in computational complexity.
Neural Lyapunov Control requires evaluation of learning di-
rections over a whole domain, while we only require it on a
boundary of a domain, effectively reducing the dimension of
the verification problem by one (c.f. Lemma 1).

2 Preliminaries
We consider decentralized learning schemes for groups of n
agents that can be represented compactly by discrete adaptive
dynamics of the form:

x1t+1 := x1t + γF1(x
1
t , . . . , x

n
t ),

. . . ,

xnt+1 := xnt + γFn(x
1
t , . . . , x

n
t ),

(1)

where xi ∈ Xi ⊂ Rki represents a point in the strategy space
of a given agent i (e.g. weights in a neural network or ratios



of playing a mixed strategy), and the parameter γ ∈ R+ de-
notes the adaptation rate. Throughout this paper, we assume
that the learning operators are continuous, and we denote by
N =

∑
i ki the dimensionality of the joint learning space.

The maps Fi : Xi → Rki represent the learning operators,
i.e. the outputs of the algorithms of each agent based on the
inputs. For instance, for individual gradient-ascent type of
algorithms we have

Fi(x
1, . . . , xn) = ∇xiE(Ri|x1, . . . , xn). (2)

with Ri : RN → R being the individual reward/payoff for
agent i. To simplify the exposition, we will sometimes repre-
sent the learning system (1) in a vectorized notation

xt+1 := xt + γF (xt) (3)

with F = [F1, . . . , Fn]
T and x = [x1, . . . , xn]T . Joint strat-

egy sequences {xt}t which satisfy (3) will be referred to as
the learning trajectories.

An equilibrium for the system (3) is a point in the joint
strategy space x∗ ∈ RN such that F (x∗) = 0. In gradient
learning, it is also a necessary condition for a strategy profile
to be a local optimum, with the sufficient condition being that
the Hessian of the learning operator F is negative definite.
We remark that an equilibrium for the learning system (3)
does not necessarily need to be a Nash equilibrium; however,
a local optimum is a local Nash point, i.e. no agent is able
to increase their reward unilaterally from a such point by per-
forming a small deviation in its strategy.

For single agent learning, gradient descent in (2) does con-
verge to a local optimum under mild assumptions of regular-
ity of Ri, and suitable choices of γ (i.e. γ can be constant,
but needs to be suitably small). In general multi-agent set-
ting, learning schemes given by systems of form (1) can have
complicated, even chaotic dynamics, and might not converge
to equilibria at all, as for instance in relatively simple two-
player games [Sato et al., 2002].

3 Trapping Regions
Convergence in multi-agent learning cannot be always guar-
anteed; however the key aspect for security / reliability is of-
ten enough to ensure, that learning agents do not diverge into
regions of policy space, which can yield dangerous combi-
nations of strategies. To this end, one needs to contain the
learning trajectories within a prescribed safety region. Moti-
vated by this rationale, in this section we formally define the
trapping region – a subset of the joint strategy space, char-
acterized by the property that learning trajectories that begin
within such region can never leave it.

We remark that the definitions and theorems below could
have been framed in a continuous learning setting by work-
ing with the ordinary differential equation ẋ = F (x). but
we opted for a discrete point of view, as more commonly en-
countered in literature on learning systems. The discrete sys-
tem (3) does in fact emerge as the Euler numerical solution of
the ODE, with step size γ.

3.1 Formal Definition and Forward Invariance
In what follows, we will denote by intX and ∂X respec-
tively the topological interior and boundary of a set X , by
dist(x,X) the Euclidean distance between a point x and a
set X , and by diam(X) the diameter (in Euclidean distance)
of a set X . By X l we will denote the Cartesian product of l
copies of X . We also recall that a compact set is a set which
is bounded, and which contains limit points for all convergent
sequences of its elements. We first recall the classical defini-
tion of a trapping region in context of learning dynamics (1).
Definition 1. c.f. [Bonatti, 2006]. Let T ⊂ RN be a compact
subset of the joint strategy space, and let γ > 0. If

x+ γF (x) ⊂ intT, ∀x ∈ T, (4)

then we call T a trapping region (for the system (3), with
learning rate γ).

The following theorem, a folklore in dynamical systems
community, highlights the advantage of establishing trapping
regions; a trapping region not only guarantees that the learn-
ing curves starting inside can never escape it, but also that
there is a learning equilibrium (possibly a Nash equilibrium)
inside of it.
Theorem 1. Let T be a trapping region. Then

1. Any learning trajectory (3) that starts in T never leaves
T,

2. If T is convex, then there exists a learning equilibrium
x∗ ∈ intT.

3.2 Algorithmic Verification: Explicit Learning
Dynamics

In practice, verification of condition (4) can be troublesome,
as the volume of the trapping region usually requires a pro-
hibitively high amount of samples. For small learning rates
and continuous learning dynamics, it is however enough to
verify this assumption on the boundary, as any trajectory that
could leave the region would have to pass through the bound-
ary area. This is a standard argument, more commonly known
in the continous case (e.g. [Meiss, 2007]), and is formalized
for our discrete setting in Lemma 1.
Lemma 1. Given a compact set T, if γ > 0 is sufficiently
small, and for all x ∈ ∂T we have

x+ γF (x) ∈ intT, (5)

then T is a trapping region.
Lemma 1 can be used to derive exact inequalities needed

to be satisfied by the learning operators, which are sufficient
to establish a trapping region. In what follows, we denote by
xi = [xi1, . . . , xiki ]T and Fi = [Fi1, . . . , Fiki ]

T the com-
ponents of strategies and learning operators for each agent
i ∈ 1, . . . , n. In the examples we will sometimes omit the
second subscript, when the strategy space of each agent is
one-dimensional.
Definition 2. Let T be a set of the form of a product of inter-
vals

T := [x11− , x
11
+ ]× · · · × [xnkn− , xnkn+ ] ⊂ RN . (6)
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Figure 1: A schematic illustration of a trapping region T, arrows in-
dicate the possible directions of learning dynamics on the boundary
(left), and a binary partitioning of the first right face of T (right).

For i ∈ 1, . . . , n, j ∈ 1, . . . ki, we denote by Tij
l the set of

all points x ∈ T, such that πij – the projection onto i-th
agents j-th component satisfies πijx = xij− . We call this set
the (ijth) left face of T. Similarly, we denote by Tij

r the set of
all points x ∈ T, such that πijx = xij+ , and call it the (ijth)
right face of T.

Our next Lemma follows follows directly from Lemma 1
applied to a trapping region of form of a product of intervals.

Lemma 2. Given a set T ∈ RN which is a product of in-
tervals, assume that the following isolation inequalities are
satisfied:

Fij(x) > 0, ∀x ∈ Tij
l ,

Fij(x) < 0, ∀x ∈ Tij
r .

(7)

Then, the set T is a trapping region for γ > 0 sufficiently
small.

For Lipschitz-continuous learning dynamics, and trapping
regions of form of a product of intervals, explicit bound on
the range of γ can be given.

Theorem 2. Let T be as in Lemma 2 and F be Lipschitz-
continuous with Lipschitz constant over T bounded from
above by L. The upper bound on step size γ for which T
forms a trapping region in the learning system (1) can be
given explicitly by

γ <
minp∈{l,r} minij minx∈Tij

p
|Fij(x)|

Lmaxx∈T ||F (x)||max
. (8)

Remark 1. For sufficiently regular boundaries ∂T, condi-
tions (7) can be generalized to situations, where T is not a
product of intervals. Namely, for T to be a trapping region it
is enough that

⟨F (x), n∂T(x)⟩ < 0,∀x ∈ ∂T, (9)

where n∂T(x) is the normal vector to ∂T, pointing in direc-
tion outwards of T, c.f. [Meiss, 2007].

The visualization of assumption (7) from Lemma 2 is pre-
sented in Figure 1; the intuition behind it is that the learning

operators Fij have to point inwards, into the trapping region,
so their values have to be positive on left faces and negative
on right faces. When the adaptive dynamics are not given
explicitly (e.g. they depend on a reward from environment
simulator), one may need to resort to verifying condition (7)
approximately, by evaluating the learning dynamics Fij on
a finite subset of points, which provide good enough cover-
age of faces of T. If some analytical knowledge on learning
dynamics is available, we can verify (7) rigorously (with suf-
ficient numerical precision). For instance, assume that we
know the upper bound for the Lipschitz constant of F over
T, given by L. Our verification is based on the following
observation. We will check whether

±Fij(x) > 0, x ∈ S, (10)

where S denotes either of the faces Tij
l , Tij

r , respectively,
or their hyperrectangular subsets. Then it is enough to verify
that either

∓Fij(C(S)) + Ldiam(S)/2 < 0, (11)

where C(S) is the baricenter (i.e. the centroid / intersection
of diagonals) of S. Alternatively, we can show that

±Fij(C(S)) ≤ 0, (12)

which will prove that the candidate T is not a trapping region.
If S is the whole face of T (i.e. Tij

l or Tij
r for some i, j),

then the verification of inequality (11) can fail, even despite
that T is a trapping region. Therefore, we propose to adopt
binary space partitioning mechanism [Fuchs et al., 1980] to
iteratively subdivide faces of T into smaller hyperrectangles,
until inequalities fail, or all hyperrectangles have been veri-
fied. For details, we refer to the pseudocode in Algorithm 1.
The function SPLIT in Algorithm 1 splits a hyperrectangle
S into two disjoint non-empty hyperrectangles S1, S2, such
that S = S1 ∪ S2 in half, along the longest dimension of the
hyperrectangle.

Theorem 3. If T is a trapping region, Algorithm 1
is guaranteed to terminate in finite steps. Without
loss of generality, assume that T is a unit hypercube.
Then, the computational complexity of the algorithm is
O
(
log(L/2m∗)

∑n
i=1 ki−1

∑n
i=1 ki

)
, where

m∗ = min
i,j,x∈T ij

l,r

|Fij(x)|. (13)

Conversely, if Algorithm 1 terminates and returns true, T is
a trapping region for learning rates as in Theorem 2.

3.3 Algorithmic Verification: Sampled Learning
Dynamics

In some situations, the exact learning dynamics are not avail-
able – e.g. they depend on a reward, which can only be ob-
tained from a real world or an experiment. Then, one has to
resort to heuristic verification of trapping regions, by sam-
pling points from the faces of the interval set. We provide the
pseudocode for this situation in Algorithm 2, and apply it in
practice in traffic management example in Section 4.2.



Algorithm 1 Rigorous trapping region verification via binary
space partitioning.

Inputs: Learning dynamics F ,
T = [x11− , x

11
+ ]× · · · × [xnkn− , xnkn+ ] – a candidate for the

trapping region,
L – upper bound for Lipschitz constant of F over T.
Returns: Is T a trapping region?
Start:

1: for agent i in 1:n in parallel do
2: for coordinate j in 1:kn in parallel do
3: for direction in {left,right} in parallel do
4: if direction is left then
5: SETS TO CHECK = {Tij

l }, δ = −1
6: else
7: SETS TO CHECK = {Tij

r }, δ = 1
8: while SETS TO CHECK ̸= ∅ do
9: S = SETS TO CHECK.POP()

10: C(S) = baricenter(S)
11: if δFij(C(S)) ≥ 0 then
12: return false // no isolation
13: else if δFij(C(S)) + Ldiam(S) /2 ≥ 0 then
14: // need subdivision to check isolation
15: S1, S2=SPLIT(S) // binary partitioning
16: SETS TO CHECK.PUSH(S1, S2)
17: return true

Proposition 1. Algorithm 2 always terminates in finite steps,
regardless of whether T is a trapping region or not. The com-
putational complexity of the algorithm is O(2M

∑n
i=1 ki).

We remark that Algorithm 2 contains a naive, uniform sam-
pling strategy, and one can envision a more sophisticated tree-
like partitioning, like in Algorithm 1, where we resample the
regions in which we are closest to failing the isolation in-
equalities. However, due to computational demands of our
illustrative example, the traffic experiment in Section 4.2, we
have opted for uniform sampling, as it offers highest parallel
execution potential, and was most suited for execution in a
computational cluster environment – every sample evaluation
can be executed as a separate process.
Theorem 4. Let S∗ be the set of all sampled points, D be the
size of mesh generated by the sample, i.e.

D = sup
i,j,x∈T ij

l,r

min
x∗∈S∗

||x− x∗||. (14)

Also let
m∗ = min

i,j,x∗∈S∗
||Fij(x∗)|| (15)

quantify how close we were to fail verifying isolation over S∗.
If Algorithm 2 returns true and F is Lipschitz-continuous with
Lipschitz constant L < m∗/D, then T is a trapping region
for learning rates as in Theorem 2.

4 Examples
In this Section we will provide examples of application of Al-
gorithm 1 to two systems with known dynamics – a Genera-
tive Adversarial Network in Subsection 4.1 and of application

Algorithm 2 Non-rigorous trapping region verification via
sampling.

Inputs: Learning dynamics F ,
F – learning dynamics, can be only sampled (e.g. from
simulator),
T = [x11− , x

11
+ ]× · · · × [xnkn− , xnkn+ ] – a candidate for the

trapping region,
M – sample size per face
Returns: Is T a trapping region?
Start:

1: for agent i in 1:n in parallel do
2: for coordinate j in 1:kn in parallel do
3: for direction in {left,right} in parallel do
4: if direction is left then
5: SET = Tij

l , δ = −1
6: else
7: SET= Tij

r , δ = 1
// a uniformly spaced sample of M points

8: S = SAMPLE POINTS(SET, M )
9: for x ∈ S in parallel do

10: // F evaluated on sample points
11: if δFij(x) ≥ 0 then
12: return false // no isolation
13: return true

of Algorithm 2 to a traffic learning system with dynamics pro-
vided by the system simulator in Subsection 4.2. Additional
example in a model of economic competition is provided in
the Supplementary Material.

4.1 Generative Adversarial Learning
Our first example is a system, which exemplifies the issue
of non-convergence of multi-agent learning, but where trap-
ping regions can be readily constructed. Since the learning
is non-convergent, methods based on Lyapunov functions,
and regions of attractions of equilibria would not be appli-
cable to this scenario. We consider a parameterized family
of learning systems, where the parameter controls the cou-
pling between learner rewards – from completely decoupled,
to strongly coupled. More concretely, agent one is in con-
trol of a continuous variable ψ ∈ R, and agent two controls
θ ∈ R. The rewards of each agent are the negative of the loss
functions for each, and these are given by

L1(ψ, θ) = ψ4 + ϵψθ, (16)

and
L2(ψ, θ) = θ4 − ϵψθ, (17)

for some positive, small ϵ.
Both agents use gradient descent on their respective loss

functions, with a fixed step γ, which leads to following update
rules

ψt+1 := ψt − γ(4ψ3
t + ϵθt),

θt+1 := θt − γ(4θ3t − ϵψt),
(18)

which, for short, we shall denote by (ψt+1, θt+1) =:
G(ψt, θt).
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Figure 2: Learning trajectories of regularized Dirac-GAN diverge
from the center equilibrium, but can be proven to be contained by a
trapping region. In such non-convergent scenario a construction of
a Lyapunov function is impossible.

Although a system with such prescribed loss functions is
nothing more than a toy example, it serves to accentuate the
problems of non-convergence. Similar learning systems have
been thoroughly analyzed in literature; this system in fact has
the same update rules as the famously non-convergent Dirac-
GAN example in [Mescheder et al., 2018] with the Wasser-
stein loss function, where both the generator and the discrim-
inator apply an L4 regularization term weighted by factor in-
versely proportional to ϵ.

The dynamics of (18) are surprisingly complicated for such
low dimensional system. The system possesses a single Nash
equilibrium (ψ, θ) = (0, 0) (also the only learning equilib-
rium), regardless of the value of ϵ. For joint optimization,
the equilibrium is always locally unstable (regardless of how
small the system coupling parameter ϵ is), and the learning
trajectories starting from its near proximity diverge from it
until they enter a cyclic regime. For initial conditions of larger
norm, they converge towards the cyclic attractor, and never
reach the equilibrium; in fact none of the other trajectories
does. The divergence from the Nash equilibrium is formal-
ized via the following proposition below (with ∥·∥ denoting
L2 norm):

Proposition 2. For any γ > 0 and any ϵ > 0 there ex-
ist a value R0 > 0, such that for any (ψ0, θ0) with 0 <
∥(ψ0, θ0)∥ < R0 we have ∥G(ψ0, θ0)∥ > ∥(ψ0, θ0)∥. As a
consequence, (0, 0) is a repelling equilibrium.

On the other hand, it is easy to find trapping regions. We
report that by executing Algorithm 1 we have successfully
established existence of various trapping regions for differ-
ent values of ϵ, and computed γ bounds via formula (8) (by
making use of quantities obtained in the algorithm):

• T = [−0.1, 0.1]2 and ϵ ∈ {0.01, 0.02, 0.03, 0.04} (we
report failure, i.e. it is not a trapping region for ϵ =
0.05) and the upper bounds on γ are given by {4.6 ×
10−3, 7.9× 10−3, 1.7× 10−3, 10−17}, respectively;

• T = [−0.2, 0.2]2 and ϵ ∈ {0.05, 0.1, 0.15} (failure for

Figure 3: Multi-intersection traffic management problem map. Indi-
vidual intersections optimize their own traffic demand by assigning
green time to competing traffic streams. The safe set is defined by
having minimally at least 20 seconds of uninterrupted green time for
each traffic direction.

ϵ = 0.2), and the upper bounds on γ are given by {1.9×
10−2, 4.6× 10−4, 2.0× 10−4}, respectively.

The Lipschitz constants in both examples were found ana-
lytically, by maximizing the L1 norm of the total derivative
||D(ψ,θ)G|| over (ψ, θ) ∈ T. We remark that the closer
we got to the point of failure, the more subdivisions were
needed in the partitioning algorithm, however the execution
time was near immediate – a few seconds at most on a mod-
ern laptop, without leveraging parallelization. To contrast,
a brute force optimization without verifying the trapping re-
gion would yield endless execution without convergence, and
without any guarantees that learning will not diverge.

For this particular system, we can also prove the existence
of an ϵ-parameterized family of trapping regions theoretically,
by the following proposition:

Proposition 3. The square given by [−
√
ϵ,
√
ϵ]2 is a trap-

ping region for step size γ > 0 small enough. As a conse-
quence, trajectories never leave [−

√
ϵ,
√
ϵ]2, and there is an

equilibrium inside [−
√
ϵ,
√
ϵ]2 (it is in fact the global Nash

equilibrium (0, 0)).

4.2 Multi-Agent Traffic Management
Our second example is of a more practical nature. We analyze
a rectangular network of four signalized intersections, each
situated 200 meters from its two nearest neighbors, as de-
picted in Figure 3. Each of the intersections controls traffic by
alternating between one of two phases – giving green to either
the vertical or the horizontal stream of vehicles. The cycle
time, i.e. the total time for serving the horizontal and, subse-
quently, the vertical movement is set to 60 seconds. For each
episode of simulation, of length of two hours, each intersec-
tion can select a strategy from the continuous set A = [0, 60],
which determines the amount of green seconds to be assigned
to the first phase (the offset). The remainder of the cycle is as-
signed to the second phase. The vehicle streams are generated
on all roads in all directions (i.e. east ↔ west, and north ↔
south), and, for simplicity, we excluded left and right turning
movements on intersections. The simulation is controlled by
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Figure 4: The trapping region T (in red) and learning trajectories
in the traffic control scenario (in black) – a projection onto first two
dimensions of joint strategy space (corresponding to offsets of north-
eastern and northwestern intersections). Learning curves, which be-
gin on the boundary of the trapping region do not escape it, and
evolve in the interior of the set.

an open-source microscopic traffic simulator SUMO [Lopez
et al., 2018], version 1.8.0. The episodical payoff for each in-
tersection is the negative of the aggregate number of vehicle-
seconds on all road lanes incoming to the intersection, there-
fore the goal of each intersection is to dispatch the incoming
traffic as efficiently as possible. To ensure that the learning
dynamics do not exhibit trivial symmetries, the simulations
were performed for a simple instance of asymmetrical de-
mand. One vehicle would be spawned each ten seconds on the
beginning of each of the outmost lanes of the network, with
the exception of the northeast ↔ northwest stream, where ve-
hicles are spawned every five seconds. Analogous computa-
tions could have been performed for other traffic patterns.

For our experiment, the selection of the strategy by the
learners is performed via decoupled gradient descent, as in
Equations (1) and (2). Each intersection controller estimates
the gradient of own reward by difference quotients:

δ∇xiRi(x) ≈ Ri(xi, x−i)−Ri(xi + δ, x−i) (19)

for some small δ (in our experiments δ = 0.1). The adapta-
tion rate γ is set to 10−6. Such settings were chosen as they
would give satisfactory results for learning on one intersec-
tion, while keeping other intersections fixed.

As discussed previously, non-convergence is an undesir-
able learning effect in such traffic management scenario, as
one would like to ensure that learning always stays within
some predetermined bounds, so minimal green time can be
given to vehicle flows and pedestrians within each cycle. As
a reasonable prerequisite we assume that each phase should
be given at least 20 seconds of green time, which translates
to the candidate for a trapping region given by T = [20, 40]4.
From the nature of the problem, we expect the reward func-
tion to be continuous, but we do not have an analytical for-
mula for it. Therefore, we apply Algorithm 2 and sample
faces of T with a uniform rectangular grid of five points in
each direction (M = 125). This part of computation is paral-
lelized over multiple threads, and so it does not significantly

increase verification time.
The numerical evaluation of isolation inequalities (7) is

successful; and, according to Theorem 1 we conclude that
each learning trajectory that starts in T stays in T, regardless
of whether it converges, and that there is a learning equilib-
rium in intT. We illustrate this by plotting projections of
the trapping region and four learning trajectories in Figure 4.
We remark that due to parallelization, verifying the region
was much more efficient computationally, than computing
learning trajectories. It took about half an hour on 32 CPUs,
whereas computation of depicted 500 steps of each learning
trajectory took about eight hours, and could utilize only one
CPU per trajectory. The experiment used AMD 7452 and
AMD 7502P CPUs, 2.35 and 2.5 Ghz respectively. It would
have been technically possible to execute the algorithm on a
GPU, however in this example it would bring no advantage,
as the most time consuming part was obtaining reward differ-
ence quotients from the system simulator, which can only run
on CPUs.

5 Applicability, Limitations and Future Work
In this paper we have introduced the method of trapping
regions, which can be used to circumvent safety problems
caused by non-convergence in multi-agent learning. We have
presented algorithms for verification of trapping regions, and
theoretical results on the implications for safety and provided
examples in GAN learning, in an applied traffic management
scenario, and (in the Supplementary Material) in a standard
mathematical model of economic competition.

Our examples are relatively low-dimensional. We how-
ever remark, that even low-dimensional learning can be
non-convergent and highly unpredictable, and therefore pose
safety concerns (e.g. the chaotic example of chaos in a sim-
ple two player game [Sato et al., 2002]). Moreover, low-
dimensionality of strategy spaces does not mean that the
learning systems need to be trivial; for instance agents can be
controlled by high-dimensional pre-trained neural networks
with the last layer being retrained online. Our algorithms are
well suited to deal with such scenarios. The extension of the
method to high-dimensional settings is a challenge for future
research, due to exponential complexity of verification algo-
rithms w.r.to the joint action space. We see possibilities for
exploiting symmetries of the action space as a method for di-
mensionality reduction: e.g., in mean field games where an
infinite amount of identical agents share same learning dy-
namics [Yang et al., 2018], or by employing coordination
graphs [Kuyer et al., 2008].
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waj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and
Lu Feng. Safe multi-agent reinforcement learning via
shielding. AAMAS, 2021.

[Fuchs et al., 1980] Henry Fuchs, Zvi M Kedem, and
Bruce F Naylor. On visible surface generation by a pri-
ori tree structures. In Proceedings of the 7th annual con-
ference on Computer graphics and interactive techniques,
pages 124–133, 1980.

[Garcıa and Fernández, 2015] Javier Garcıa and Fernando
Fernández. A comprehensive survey on safe reinforcement
learning. JMLR, 16(1):1437–1480, 2015.

[Hart and Mas-Colell, 2003] Sergiu Hart and Andreu Mas-
Colell. Uncoupled dynamics do not lead to nash equi-
librium. American Economic Review, 93(5):1830–1836,
December 2003.

[Kleinberg et al., 2011] Robert D Kleinberg, Katrina Ligett,
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