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ABSTRACT
A natural solution concept for many multiagent settings is the
Stackelberg equilibrium, under which a “leader” agent selects a
strategy that maximizes its own payoff assuming the “follower”
agent chooses their best response to this strategy. Recent work
has presented asymmetric learning updates that can be shown to
converge to the differential Stackelberg equilibria of two-player
differentiable games. These updates are “coupled” in the sense that
the leader requires some information about the follower’s payoff
function. Such coupled learning rules cannot be applied to ad hoc in-
teractive learning settings, and can be computationally impractical
even in centralized training settings where the follower’s payoffs
are known. In this work, we present an “uncoupled” learning pro-
cess under which each player’s learning update only depends on
their observations of the other’s behavior. We prove that this pro-
cess converges to a local Stackelberg equilibrium under similar
conditions as previous coupled methods. We conclude with a dis-
cussion of the potential applications of our approach to human–AI
cooperation and multi-agent reinforcement learning.
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1 INTRODUCTION
A central goal of multiagent systems research has been to under-
stand the long-term behavior of independent learning agents that
optimize their individual strategies through repeated interaction.
In the context of human–AI or AI–AI interaction, theoretical re-
sults on learning dynamics allow us to determine if and when the
independent learners will converge to a fixed joint strategy, and
characterize the strategies they are likely to converge to. Such re-
sults also inform the design of new learning algorithms that have
desirable convergence properties. Recent years have seen a surge of
interest in the dynamics of multiagent learning, driven by the recog-
nition that many machine learning problems can be formulated as
games with continuous, high-dimensional strategy spaces and dif-
ferentiable payoff functions. Results on multiagent learning in such
differentiable games have found application to reinforcement learn-
ing [33] and the training of generative adversarial networks [2].
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In this work, we consider the problem of finding hierarchical
solutions in two-player, general-sum differentiable games. Under
the hierarchical model of play, one player (the “leader”) selects their
strategy first, after which the other player (the “follower”) selects
their best-response to this strategy. The natural solution concept
for the hierarchical model of play is the Stackelberg equilibrium, in
which the leader’s strategy is optimal under the assumption that
the follower will play their best response to any strategy the leader
might choose. The hierarchical model is well suited to cooperative
settings, where the leader can play their half of a jointly optimal
strategy knowing that the follower will respond appropriately. It
has also been argued [13] that the Stackelberg equilibrium is a
more useful solution concept for differentiable games than the
Nash equilibrium, as the Stackelberg equilibrium exists in games
where the Nash equilibrium does not.

This fact has motivated the development of “hierarchical” gra-
dient ascent methods for finding Stackelberg equilibria of differ-
entiable games. As gradient ascent methods can only hope to find
local optima of non-concave functions, these methods seek local
Stackelberg equilbria (LSE). In particular, Fiez et al. [9] have pre-
sented a hierarchical gradient update that is shown to converge
to LSE in certain differentiable games. Unfortunately, this coupled
learning update requires complete knowledge of the follower’s pay-
off function, and therefore cannot be applied to ad hoc learning
settings, where the other agent’s payoff function is unknown. The
hierarchical update also requires the Hessian of the follower’s pay-
off function, and so may be computationally intractable in settings
where second-order derivatives are expensive to estimate (such as
reinforcement learning).

The main contribution of this work is a novel uncoupled learn-
ing rule that estimates the leader’s gradient update by sampling
strategies close to the leader’s current strategy, and then commit-
ting to these “perturbed” strategies long enough that the follower
has time to adapt to them. This learning update, which we refer
to as Hierarchical learning with Commitments (Hi-C), does not re-
quire that the leader has access to the follower’s payoff function,
or detailed knowledge of their learning process. As such, the Hi-C
update is applicable to learning in the ad hoc setting, and to prob-
lems where estimating the higher-order derivatives of the payoff
functions is impractical. Our main theoretical results show that
Hi-C converges to a local Stackelberg solution for the leader under
a generic assumption that the follower’s own strategy converges to
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its best response sufficiently fast. We also provide specific conver-
gence guarantees for the case where the follower’s payoff function
is strongly concave, and the follower updates their strategy using
gradient ascent. We note that the conditions under which Hi-C
converges with a gradient ascent partner are only slightly more
restrictive than those required for the convergence of the exact
hierarchical gradient update.

We describe the hierarchical gradient update and the local Stack-
elberg equilibrium in Section 3.We present theHi-C learning update
and our main convergence results in Section 4, while in Section 4.2
we provide concrete convergence guarantees for the special case
where the follower’s payoff function is strongly concave. We con-
clude with a discussion of the implications of our results for the
problem of ad hoc human–AI cooperation.

2 RELATEDWORK
In recent years, a large body of work has emerged on the problem
of solving differentiable games using gradient ascent methods. It
has been shown that simultaneous gradient ascent on individual
payoff functions can fail to converge in such games [17, 18]. Con-
vergence issues have led to the development of alternative solution
concepts to the Nash equilibrium that are potentially better suited
to differentiable games. These include chain recurrent sets [23] and
local Stackelberg equilibria [13]. Other work has proposed modified
gradient ascent approaches designed to achieve at least local conver-
gence to fixed-points in certain classes of games [2, 18, 28]. Similar
to our approach are methods for two-player games that update the
individual strategies on two different timescales [16, 19, 22]. As
with our approach, Nouiehed et al. [22] implement timescale sepa-
ration by having the follower execute multiple gradient steps for
every leader update, though unlike our work, their leader update
does not directly attempt to shape the behavior of the follower.

Most closely related to our work is the two-timescale hierarchical
gradient update [8, 33], discussed in more detail in Section 3, which
has been shown to converge to local Stackelberg equilibria in zero-
sum games. Unlike our method, the hierarchical gradient update
requires that the leader have access to the follower’s payoffs. Also
closely related to our approach are methods that find Stackelberg
equilibria by having a leader agent commit to a fixed strategy,
and then observe the follower’s response. Assuming the follower
plays an immediate best-response, previous work has provided
lower bounds on the sample complexity of identifying Stackelberg
equilibria in Stackelberg security games [24], bandit games [1] and
Markov games [26]. The challenge in our setting is that the we must
assume the follower implements an incremental learning update,
which may only converge to a best-response asymptotically.

Our work is also related to opponent shaping approaches [11, 32],
where one or both learners explicitly account for their partner’s
learning behavior, and update their strategies accordingly. Of these
methods, the model-free opponent shaping (M-FOS) framework
of Lu et al. [15] is closest to our approach. The key differences from
our method are that M-FOS only allows the follower to adapt for a
fixed number of stages, and assumes that it can be “reset" after each
learning interval. In contrast, we explicitly account for the fact that
the follower’s strategy depends on the entire history of interaction,
and allow it to adapt over increasing time horizons, which enables

asymptotic convergence. Finally, Hi-C is conceptually similar to no-
regret learning methods for non-stationary tasks [7] and adaptive
partners [25], in which the leader commits to candidate “expert”
strategies for increasingly long time intervals.

3 PRELIMINARIES
We consider the class of two-player, general-sum differentiable
games. Let X ⊆ ℜ𝑑1 and Y ⊆ ℜ𝑑2 denote the strategy spaces for
players 1 and 2 respectively. When discussing hierarchical play,
we will always let player 1 be the leader and player 2 the follower.
Let 𝑓𝑖 : X × Y ↦→ ℜ denote the payoff function of the player
𝑖 , with 𝑓𝑖 ∈ 𝐶2 (X × Y,R) for all 𝑖 ∈ {1, 2} (𝑓𝑖 is twice continu-
ously differentiable). Let ∇𝑥 𝑓𝑖 (𝑥,𝑦) and ∇𝑦 𝑓𝑖 (𝑥,𝑦) denote the gra-
dients of 𝑓𝑖 w.r.t. player 1 and player 2’s strategies respectively.
We denote by ∇𝑥𝑦 𝑓𝑖 (𝑥,𝑦) = ∇𝑦 [∇𝑥 𝑓𝑖 (𝑥,𝑦)] the Jacobian of the
gradient ∇𝑥 𝑓𝑖 (𝑥,𝑦) w.r.t.𝑦, and define ∇𝑦𝑥 𝑓𝑖 (𝑥,𝑦), ∇𝑥𝑥 𝑓𝑖 (𝑥,𝑦), and
∇𝑦𝑦 𝑓𝑖 (𝑥,𝑦) similarly. Finally, we let ∥ · ∥ denote the Euclidean norm.

3.1 Simultaneous Gradient Ascent
The most straightforward approach to solving differentiable games
is simultaneous gradient ascent (SGA), where each player 𝑖 performs
gradient ascent on their own payoff function 𝑓𝑖 , treating the other
player’s strategies as fixed. The two-player SGA updates are

𝑥𝑡+1 = 𝑥𝑡 + 𝛼1,𝑡∇𝑥 𝑓1 (𝑥𝑡 , 𝑦𝑡 ) (1)
𝑦𝑡+1 = 𝑦𝑡 + 𝛼2,𝑡∇𝑦 𝑓2 (𝑥𝑡 , 𝑦𝑡 ) (2)

where the sequences {𝛼1,𝑡 } and {𝛼2,𝑡 } are learning rate schedules,
which may differ between the players. SGA is often the default
approach for problems described by two-player games (such as
training GANs [12]). We can also view SGA as a model of ad hoc
learning between independent agents. In the ad hoc setting, players
are only aware of their own payoff functions, and the strategies
other players follow at each stage 𝑡 of the game.

For non-concave payoff functions, however, we cannot expect
SGA to find global optima in the strategy space of either player.
This motivates the development of local alternatives, in particular
the differential Nash equilibrium (DNE).

Definition 3.1 (Differential Nash Equilibrium [27]). Let 𝜔 (𝑥,𝑦) =
(∇𝑥 𝑓1 (𝑥,𝑦),∇𝑦 𝑓2 (𝑥,𝑦)) be the individual gradients of the players’
payoff functions at (𝑥,𝑦). A strategy profile (𝑥∗, 𝑦∗) ∈ X × Y is a
differential Nash equilibrium if and only if:

(I) 𝜔 (𝑥∗, 𝑦∗) = 0, and
(II) ∇𝑥𝑥 𝑓1 (𝑥∗, 𝑦∗), and ∇𝑦𝑦 𝑓2 (𝑥∗, 𝑦∗) are negative definite.

DNEs are a local version of the Nash equilibrium in the sense that
any unilateral deviation within a small neighbourhood of (𝑥∗, 𝑦∗)
will not improve the payoff of the deviating player. We can also
interpret DNEs as the fixed-points of SGA on each player’s individ-
ual payoff function that have a game-theoretic meaning (i.e. Local
Nash). Previous work has shown that gradient-based dynamics such
as SGA can converge to DNE in specific classes of games [14, 27].

The main issue with DNEs, however, is that they fail to exist in
certain games, which constrains the class of games for which they
are applicable as a solution concept. For example, Nash equilibria
exist for convex costs (i.e. concave payoffs) on compact and convex
strategy spaces, while a DNE exists if these conditions, as described



in Başar and Olsder [3, Theorem 4.3 & Chapter 4.9], are met locally
within the some neighborhood around a fixed point of SGA [8]. As
we will discuss below, an alternative local solution concept based
on Stackelberg equilibria exists in more relaxed conditions, and is
therefore applicable to a wider class of games.

3.2 Hierarchical Play
In settings such as human–AI collaboration, a natural hierarchy
emerges where one agent takes up the role of the leader, and the
other adapts to the leader’s behaviour [6, 10, 21]. The natural solu-
tion concept for hierarchical play is the Stackelberg equilibrium,
in which the leader chooses a strategy that maximizes its payoff
under the follower’s best response.

Definition 3.2 (Stackelberg Equilibrium [29]). Let the set BR(𝑥) =
argmax𝑦∈Y 𝑓2 (𝑥,𝑦) denote the follower’s set of best-responses
when the leader plays 𝑥 . A joint strategy (𝑥∗, 𝑦∗) ∈ X × Y is a
Stackelberg equilibrium if and only if 𝑦∗ ∈ BR(𝑥∗) and:

min
𝑦∈BR(𝑥∗ )

𝑓1 (𝑥∗, 𝑦) ≥ min
𝑦∈BR(𝑥 )

𝑓1 (𝑥,𝑦) (3)

for all 𝑥 ∈ X. Furthermore, the individual strategy 𝑥∗ satisfying
Equation 3 is called a Stackelberg solution for the leader.

Recent work [9, 13] has shown that the hierarchical model can be
applied to differentiable games as well. While a differentiable game
may possess no Nash equilibria, a Stackelberg equilibrium will
always exist so long as the strategy spaces X andY are compact [3,
Theorem 4.8 & Chapter 4.9]. Note that Definition 3.2 assumes that
the follower breaks ties so as to minimize the leader’s payoffs.
Therefore, a Stackelberg solution maximizes the leader’s worst-
case payoff assuming the follower will act rationally, and so in
zero-sum games the Stackelberg solution guarantees the leader
will receive at least its security value. Procedures based on the
hierarchical model have proven successful in training generative
adversarial networks [8, 19] and actor–critic methods [33].

3.3 Differential Stackelberg Equilibria
Definition 3.2 assumes that both the leader and the follower have
found global optima in their respective strategy spaces. For non-
concave payoff functions, the best an individual player can hope
to find with gradient ascent is a local optimum of its individual
objective (even if the other player’s strategy remained fixed). The
desire to apply the hierarchical model to differentiable games has
motivated the development of a local version of the SE referred to
as the differential Stackelberg equilibrium (DSE) [8].

In describing the DSE we will make a simplifying assumption
that will also be useful for analyzing the convergence of our Hi-C
learning update. We assume that for each 𝑥 ∈ X the follower’s
best-response is unique, and that there exists a continuously differ-
entiable function 𝑟 : X ↦→ Y such that

𝑟 (𝑥) = argmax
𝑦∈Y

𝑓2 (𝑥,𝑦), ∀𝑥 ∈ X. (4)

Furthermore, we assume that ∇𝑦 𝑓2 (𝑥, 𝑟 (𝑥)) = 0 (the best response
is not on a boundary of Y). Given such an 𝑟 , the leader’s objective
function becomes 𝑓1 (𝑥, 𝑟 (𝑥)), and so a local optimum 𝑥∗ for the
leader will satisfy ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = 0, where ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] =
∇𝑥 𝑓1 (𝑥, 𝑟 (𝑥)) + [∇𝑦 𝑓1 (𝑥, 𝑟 (𝑥))]⊤∇𝑥𝑟 (𝑥).

Definition 3.3 (Differential Stackelberg Equilibrium [8]). A strat-
egy profile (𝑥∗, 𝑦∗) ∈ X × Y, with 𝑟 (𝑥∗) = 𝑦∗, is a differential
Stackelberg equilibrium if and only if:

(I) ∇𝑥 [𝑓1 (𝑥∗, 𝑟 (𝑥∗))] = 0 and ∇𝑦 𝑓2 (𝑥∗, 𝑦∗) = 0, and
(II) ∇𝑥𝑥 [𝑓1 (𝑥∗, 𝑟 (𝑥∗))] and ∇𝑦𝑦 𝑓2 (𝑥∗, 𝑦∗) are both negative def-

inite.
Furthermore, any 𝑥∗ satisfying these conditions is a differential
Stackelberg solution (DSS) for the leader.

Condition (II) ensures that 𝑥∗ and 𝑦∗ are local maxima of the
player’s individual objectives, rather than minima or saddle points.
Note that conditions (I) and (II) do not imply that ∇𝑥 𝑓1 (𝑥∗, 𝑦∗) = 0,
and so DSE may not always be stable under gradient ascent on 𝑓1.
This reflects the nature of Stackelberg equilibria in general, as the
leader’s strategy is not necessarily a best-response itself.

3.4 Hierarchical Gradient Update
Assuming that under the follower’s payoffs 𝑓2 there is a unique,
continuously differentiable best-response function 𝑟 , a natural ap-
proach to finding DSE is to perform gradient ascent on the leader’s
objective function 𝑓1 (𝑥, 𝑟 (𝑥)). Given only 𝑓2, however, we may
not be able to derive a closed form expression for 𝑟 as a function
of 𝑥 . Fortunately, for a joint strategy (𝑥,𝑦) ∈ X × Y for which
𝑦 = 𝑟 (𝑥) and ∇𝑦𝑦 𝑓2 (𝑥,𝑦) is nonsingular, the implicit function
theorem gives us a closed-form expression for ∇𝑥𝑟 (𝑥) as a func-
tion of 𝑥 and 𝑦 [9]. When 𝑦 = 𝑟 (𝑥), we have that that the Jaco-
bian ∇𝑥𝑟 (𝑥) = −

(
∇𝑦𝑦 𝑓2 (𝑥,𝑦)

)−1 ∇𝑥𝑦 𝑓2 (𝑥,𝑦). The gradient of the
leader’s objective then becomes

∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = ∇𝑥 𝑓1 (𝑥,𝑦) (5)

−∇𝑦 𝑓2 (𝑥,𝑦)⊤
(
∇𝑦𝑦 𝑓2 (𝑥,𝑦)

)−1 ∇𝑥𝑦 𝑓2 (𝑥,𝑦) (6)
= 𝐷 (𝑥,𝑦) (7)

Evaluating 𝐷 (𝑥,𝑦) for a given 𝑥 requires the value of 𝑦 = 𝑟 (𝑥). One
way to compute the leader’s gradient update is then to optimize 𝑦
via gradient ascent on 𝑓2 while keeping 𝑥 constant, and allowing
𝑦 to converge to 𝑟 (𝑥) before performing each gradient step for
the leader’s strategy. A more practical approach (see [9]) is a two-
timescale algorithm in which the leader and follower strategies are
updated simultaneously, with the follower using a faster learning
rate than the leader. Where we only have noisy estimates of the
gradients, the two-timescale hierarchical gradient updates become

𝑥𝑡+1 = 𝑥𝑡 + 𝛼1,𝑡 (𝐷 (𝑥𝑡 , 𝑦𝑡 ) +𝑤1,𝑡 ) (8)
𝑦𝑡+1 = 𝑦𝑡 + 𝛼2,𝑡 (∇𝑦 𝑓2 (𝑥𝑡 , 𝑦𝑡 ) +𝑤2,𝑡 ) . (9)

where {𝑤1,𝑡 } and {𝑤2,𝑡 } independent zero-mean noise sequences,
and the leader’s update 𝐷 (𝑥,𝑦) is defined as in Equation 7. To
achieve time-scale separation, the learning rate schedules are cho-
sen so that 𝛼2,𝑡 ≫ 𝛼1,𝑡 , which allows the follower’s strategy to
“track” its best response to the leader’s current strategy. If the learn-
ing rates are chosen such that lim𝑡→∞

𝛼1,𝑡
𝛼2,𝑡

= 0, then results on
two-timescale stochastic approximation (see Borkar [5, Chapter
6.1]) can be used to analyze the convergence properties of 8 and 9.
In Section 4.1, we instead apply single-timescale stochastic approx-
imation results to analyze the convergence of our Hi-C learning
update, abstracting away the follower’s learning dynamics in the
form of a generic “tracking error” constraint (Assumption 4.5).



3.5 Limitations of Coupled Learning
We can see that the explicit form of the leader’s update in Equation 8
depends on the Hessian ∇𝑦𝑦 𝑓2 of the follower’s payoff function,
which implies that the leader must know the structure of 𝑓2. This
assumption does not hold in ad hoc interactions, where the leader
only has access to the follower’s observable behavior. Even in cen-
tralized settings where the leader can estimate the gradient and
Hessian of 𝑓2 directly, this estimation can be expensive and suffer
from high variance. This is particularly true in settings such as
reinforcement learning, where gradients (and Hessians) must be
estimated through monte-carlo simulations. Other learning updates
such as LOLA [11] also depend on estimates of the follower Hessian,
and suffer from the same limitations. In the next section we will de-
scribe a learning algorithm that estimates ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] from the
follower’s behavior alone, while maintaining similar convergence
guarantees to the two-timescale hierarchical gradient update.

4 UNCOUPLED LEARNINGWITH
COMMITMENTS

Algorithm 1 The Hi-C learning algorithm, where follower strate-
gies 𝑦𝑡 are chosen arbitrarily, and𝑤𝑡 are zero-mean noise variables.
𝑡 (𝑛) = ∑𝑛−1

𝑚=0 𝑘𝑚 is the stage at which interval 𝑛 started.

1: Inputs: Step-size schedule {𝛼𝑛}𝑛≥0, perturbation schedule
{𝛿𝑛}𝑛≥0, commitment schedule {𝑘𝑛}𝑛≥0.

2: Initialize: sample 𝑥0 from X
3: for step 𝑛 = 0, 1, . . . do
4: sample Δ𝑛 uniformly from {−1, 1}𝑑1 .
5: 𝑥𝑛 ← 𝑥𝑛 + 𝛿𝑛Δ𝑛
6: for stage 𝑡 = 𝑡 (𝑛), . . . , 𝑡 (𝑛) + 𝑘𝑛 − 1 do
7: play 𝑥𝑛 .
8: observe 𝑠 ← 𝑓1 (𝑥𝑛, 𝑦𝑡 ) +𝑤𝑡 .
9: end for
10: for dimension 𝑖 = 1, . . . , 𝑑1 do
11: 𝑥𝑖

𝑛+1 = 𝑥
𝑖
𝑛 + 𝛼𝑛 𝑠

𝛿𝑛Δ𝑖
𝑛

12: end for
13: end for

From the leader’s perspective, the problem of finding a differen-
tial Stackelberg equilibrium is simply that of finding a local max-
imum of 𝑓1 (𝑥, 𝑟 (𝑥)), where 𝑟 (𝑥) is the follower’s (unique) best
response when the leader chooses 𝑥 as their strategy. The chal-
lenge in the uncoupled setting is that the leader cannot evaluate
∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] directly. Specifically, it cannot evaluate the Jacobian
∇𝑥𝑟 (𝑥) since it does not have access to the follower’s payoff func-
tion 𝑓2 on which 𝑟 (𝑥) depends. The leader can, however, estimate
the value of 𝑟 (𝑥) (and therefore 𝑓1 (𝑥, 𝑟 (𝑥))) by simply observing
the follower’s response when it plays strategy 𝑥 . A natural ap-
proach then is to replace the leader’s gradient ascent update with a
gradient-free learning rule that only requires an unbiased estimate
of 𝑓1 (𝑥, 𝑟 (𝑥)), and not of ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))].

We first consider the hypothetical case where the leader has
access to an oracle that computes the value of 𝑟 (𝑥). The leader
can use this oracle evaluate 𝑓1 (𝑥, 𝑟 (𝑥)) for any 𝑥 ∈ X. This allows
us to apply a simultaneous perturbation stochastic approximation

(SPSA) [30] method to approximate gradient ascent on 𝑓1 (𝑥, 𝑟 (𝑥)).
Specifically, we will derive Hi-C from the single-measurement form
of SPSA [31]. For all 𝑛 ≥ 0, let Δ𝑛 be independently and uniformly
sampled from {−1, 1}𝑑1 , and let {𝛿𝑛}𝑛≥0 be a decreasing perturba-
tion schedule. Let {𝑤𝑛}𝑛≥0 be a sequence of i.i.d. noise variables,
with zero-mean and uniformly bounded variance. The element-wise
single-measurement SPSA update is then

𝑥𝑖𝑛+1=𝑥
𝑖
𝑛+𝛼𝑛

𝑓1 (𝑥𝑛+𝛿𝑛Δ𝑛, 𝑟 (𝑥𝑛+𝛿𝑛Δ𝑛))+𝑤𝑛
𝛿𝑛Δ𝑖𝑛

(10)

for all 𝑖 ∈ [1, 𝑑1]. SPSA estimates the direction of the gradient by
sampling points near the current strategy 𝑥𝑛 . Going forward, let
𝑥𝑛 = 𝑥𝑛 + 𝛿𝑛Δ𝑛 denote the “perturbed” strategy evaluated at step 𝑛.
The noise terms𝑤𝑡 account for settings the leader can only observe
an unbiased estimator of 𝑓1 (e.g., a single policy roll-out).

Estimating 𝑟 (𝑥𝑛). In the uncoupled setting, the leader has no
way of directly computing 𝑟 (𝑥𝑛). What the leader can do is ob-
serve the strategies played by the follower, which is assumed to
be updating its own strategy so as to maximize its payoff under
𝑓2. This suggests an asynchronous, two-timescale learning process,
in which the leader commits to playing the perturbed strategy 𝑥𝑛
for some 𝑘𝑛 stages before updating 𝑥𝑛 . For sufficiently large 𝑘𝑛 we
should hope that after 𝑘𝑛 stages the follower’s strategy will have
approximately converged to its best-response 𝑟 (𝑥𝑛).

Under the Hi-C learning update (Algorithm 1), at each interval
𝑛 ≥ 0 the leader samples a perturbed strategy 𝑥𝑛 , and then plays
this strategy for the next 𝑘𝑛 stages. After 𝑘𝑛 stages, the leader
updates its strategy element-wise as

𝑥𝑖𝑛+1 = 𝑥
𝑖
𝑛 + 𝛼𝑛

𝑓1 (𝑥𝑛, 𝑦𝑛) +𝑤𝑛
𝛿𝑛Δ𝑖𝑛

(11)

where the follower’s final strategy within the interval, which we
denote by 𝑦𝑛 , is used as an approximation of 𝑟 (𝑥𝑛).

4.1 Convergence Analysis
In this section we make no assumptions about the follower’s learn-
ing update, and instead prove convergence of the leader’s strategy
under a generic assumption about the convergence rate of the
“tracking error” ∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ between the follower’s strategy and
its best-response. In Section 4.2 we will show that, when the fol-
lower’s payoffs are strongly concave, for an appropriate choice
of commitment schedule {𝑘𝑛}𝑛≤0 the tracking error will decrease
quickly enough to satisfy this assumption.

The follower is assumed to update their strategy at every stage
𝑡 , while the leader only performs an update after 𝑘𝑛 stages, and
so additional notation will be helpful. Let 𝑡 (𝑛) = ∑𝑛−1

𝑚=0 𝑘𝑚 be the
stage at which the leader begins its 𝑛th commitment interval, and
let 𝑛(𝑡) = max{𝑛 : 𝑡 (𝑛) ≤ 𝑡} be the current interval at stage 𝑡 . We
let 𝑥𝑛 (𝑛 ≥ 0) denote the leader’s mean strategy after 𝑛 updates,
or 𝑡 (𝑛) stages, and let 𝑦𝑡 denote the strategy the follower played
at stage 𝑡 . We then have 𝑦𝑛 = 𝑦 (𝑡 (𝑛)+𝑘𝑛−1) , the last strategy the
follower played during the 𝑛th commitment interval.

We will need to make several assumptions to prove the conver-
gence of Hi-C . We first require that the follower’s best-response is
described by a unique function 𝑟 (𝑥) :



Assumption 4.1. There exists a unique function 𝑟 : X ↦→ Y
defined by 𝑟 (𝑥) = argmax𝑦∈Y 𝑓2 (𝑥,𝑦), ∀𝑥 ∈ X. Furthermore, 𝑟 is
𝐿𝑟 -Lipschitz and 𝐾𝑟 -smooth.

The following three assumptions are standard for the analysis
of simultaneous perturbation methods [4, Chapter 5].

Assumption 4.2. 𝑥𝑛 and 𝑦𝑡 are bounded almost surely:

sup
𝑛≥0
∥𝑥𝑛 ∥ < ∞ and sup

𝑡≥0
∥𝑦𝑡 ∥ < ∞ a.s. (12)

This immediately implies that 𝑥𝑛 and 𝑦𝑛 are bounded a.s., and
because 𝑟 is Lipschitz, it implies 𝑟 (𝑥𝑛) is bounded almost surely as
well. In practice, the assumption that the strategies remain bounded
can be enforced by choosingX andY to be bounded, and projecting
the strategies back to X and Y whenever necessary.

Assumption 4.3. The leader’s payoff function 𝑓1 (𝑥,𝑦) is𝐿1-Lipschitz,
and 𝐾1-smooth in both of its arguments.

Assumption 4.3 implies that ∥∇𝑦 𝑓1 (𝑥,𝑦)∥ ≤ 𝐿1 for all (𝑥,𝑦) ∈
X × Y. Combined with Assumption 4.1, it also implies that the
leader’s hierarchical objective function 𝑔(𝑥) = 𝑓1 (𝑥, 𝑟 (𝑥)) is also
Lipschitz and smooth.

Assumption 4.4. The step-size schedule {𝛼𝑛}𝑛≥0 and perturba-
tion schedule {𝛿𝑛}𝑛≥0 satisfy:

lim
𝑛→∞

𝛼𝑛 = 0, lim
𝑛→∞

𝛿𝑛 = 0 (13)
∞∑︁
𝑛=0

𝛼𝑛 = ∞,
∞∑︁
𝑛=0

𝛼2𝑛
𝛿2𝑛

< ∞ (14)

The decreasing magnitude 𝛿𝑛 of the perturbations means that
eventually even small errors in the approximation of 𝑟 (𝑥𝑛) could
lead to large errors in the estimate of the gradient. We therefore
require a fairly strong assumption on the rate of convergence of
the tracking error.

Assumption 4.5. Define Y𝑛 = ∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥, for 𝑛 ≥ 0. Given the
commitment schedule {𝑘𝑛}𝑛≥0 and perturbation schedule {𝛿𝑛}𝑛≥0
we have:

lim
𝑛→∞

Y𝑛

𝛿𝑛
= 0 and sup

𝑛≥0

Y𝑛

𝛿𝑛
< ∞ a.s. (15)

Under Assumption 4.5, the additional error introduced by us-
ing 𝑦𝑛 rather that 𝑟 (𝑥𝑛) is bounded and 𝑜 (1) almost surely, and
so becomes negligible asymptotically. To see this, we can rewrite
Equation 11 as

𝑥𝑖𝑛+1 = 𝑥
𝑖
𝑛 + 𝛼𝑛

(
𝑓1 (𝑥𝑛, 𝑟 (𝑥𝑛)) +𝑤𝑡

𝛿𝑛Δ𝑖𝑛
+ [𝑖𝑛

)
(16)

where

[𝑖𝑛 =
𝑓1 (𝑥,𝑦𝑛) − 𝑓1 (𝑥𝑛, 𝑟 (𝑥𝑛))

𝛿𝑛Δ𝑖𝑛
(17)

≤ 𝐿1∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥
𝛿𝑛Δ𝑖𝑛

(18)

since 𝑓1 is 𝐿1-Lipschitz by Assumption 4.3. We then have

|[𝑖𝑛 | ≤
𝐿1∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥

𝛿𝑛
= 𝐿1

Y𝑛

𝛿𝑛
< ∞ a.s. (19)

where the final inequality comes from the fact that Y𝑛
𝛿𝑛

is bounded al-
most surely by Assumption 4.5. We can also see that lim𝑛→∞ |[𝑖𝑛 | =
0 almost surely, because Y𝑛

𝛿𝑛
→ 0 a.s.. We are now ready to state

our main convergence result:

Theorem 4.6. Let 𝐻 ⊆ X be the set {𝑥 ∈ X : ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = 0}.
Assume 𝐻 ≠ ∅, and that Assumptions 4.1–4.5 are satisfied under the
Hi-C update (Algorithm 1). Then the leader’s strategy 𝑥𝑛 will converge
to 𝐻 almost surely as 𝑛 →∞.

This results follows immediately from Bhatnagar et al. [4, Theo-
rem 5.2] by noting that the Hi-C update in Equation 11 is equivalent
to the single measurement SPSA update (Equation 10) save for the
bounded, 𝑜 (1) error term [𝑖𝑛 , which becomes negligible asymptoti-
cally (see [5, Chapter 2]). Under stronger assumptions, we can show
that 𝑥𝑛 converges to a differential Stackelberg solution.

Corollary 4.7. Additionally, assume that 𝐻 consists only of isolated,
asymptotically stable equilibria of the ODE:

¤𝑥 (𝑡) = ∇𝑥 [𝑓1 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))] . (20)

Then, under the Hi-C update, 𝑥𝑛 will converge to a differential Stack-
elberg solution of the game (𝑓1, 𝑓2) almost surely as 𝑛 →∞.

This follows from the fact that if 𝑥 ∈ 𝐻 is an asymptotically sta-
ble equilibrium of ¤𝑥 (𝑡) = ∇𝑥 [𝑓1 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))], then the Hessian
∇𝑥𝑥 [𝑓1 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))] must be negative definite. Combined with
∇𝑥 [𝑓1 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))] = 0, this satisfies the requirements of Defini-
tion 3.3. At first it may seem contradictory that we can prove conver-
gence to a DSS when these are not guaranteed to exist. The condi-
tions under which Corollary 4.7 holds, however, are precisely those
conditions under which a DSS does exist, that is, when 𝑓1 (𝑥, 𝑟 (𝑥))
has a strict local minimum in X.

Note that these results make no direct assumptions about the
follower’s payoff function or learning update. Indeed, if we relaxed
Assumption 4.1 they could be satisfied for finite Y and discontinu-
ous 𝑟 (𝑥). We simply requires that for every 𝑥 ∈ X the follower’s
strategy will converge to some unique fixed point 𝑟 (𝑥) at a suffi-
ciently fast rate relative to the leader’s commitment schedule. In
the next section we will consider specific scenarios in which this re-
quirement is satisfied, and howwe can select a suitable commitment
schedule given some additional information from the follower.

4.2 Choosing the Commitment Schedule
To identify commitment schedules that satisfy Assumption 4.5, we
will need finite-time convergence rate guarantees for the follower’s
strategy. In this section, we consider the well-studied case where
the follower’s objective function is strongly concave. Throughout
this section we will make a couple of additional assumptions on
the payoff function 𝑓2, and the best-response function 𝑟 :

Assumption 4.8. ∀𝑥 ∈ X, 𝑓2 (𝑥,𝑦) is 𝐾2-smooth and `-strongly
concave w.r.t. 𝑦.

Under these assumptions, deterministic gradient ascent on 𝑓2
with a fixed step-size schedule 𝛽𝑡 = 𝛽 is sufficient for the follower’s
strategy to converge to its best-response.

Proposition 4.9 (Nesterov [20, Chapter 2]). Let the follower update
its strategy using deterministic gradient ascent with a fixed step-size



𝛽 ∈ (0, 1
𝐾2
], such that

𝑦𝑡+1 = 𝑦𝑡 + 𝛽∇𝑦 𝑓2 (𝑥𝑛 (𝑡 ) , 𝑦𝑡 ) (21)

then for any stage 𝑡 ≥ 0, and any 𝑘 ∈ [1, 𝑘𝑛 (𝑡 ) ], we have

∥𝑦𝑡+𝑘 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ ≤ (1 − 𝛽`)
𝑘
2 ∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ (22)

Now assume that we are given step-size and perturbation sched-
ules {𝛼𝑛}𝑛≥0 and {𝛿𝑛}𝑛≥0 satisfying Assumption 4.4. To determine
a suitable commitment schedule, we first choose an arbitrary se-
quence {b𝑛}𝑛≥0 such that lim𝑛→∞ b𝑛 = 0 and sup𝑛 b𝑛 < ∞. We
need to choose a commitment schedule {𝑘𝑛}𝑛≥0 such that:

1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤ b𝑛 (23)

for all 𝑛 ≥ 0. To apply Proposition 4.9, we need to be able to bound
∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ for all 𝑡 ≥ 0. Previously we simply required that
the strategies be bounded almost surely (Assumption 4.2). We now
assume that this bound is fixed, and known in advance.

Assumption 4.10. There exists a deterministic constant 𝐵 < ∞
such that sup𝑡≥0 ∥𝑦𝑡 ∥ < 𝐵

2 and sup𝑛≥0 ∥𝑟 (𝑦𝑛)∥ < 𝐵
2 almost surely.

We then have sup𝑡≥0 ∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡))∥ ≤ 𝐵 almost surely. Then,
under Assumptions 4.8 and 4.10, we then have that

1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤

1
𝛿𝑛
(1 − 𝛽`)

𝑘𝑛
2 𝐵. (24)

Upper-bounding this by b𝑛 , we have
1
𝛿𝑛
(1 − 𝛽`)

𝑘𝑛
2 𝐵 ≤ b𝑛 (25)

𝑘𝑛

2
ln (1 − 𝛽`) ≤ ln

𝛿𝑛b𝑛

𝐵
(26)

2
ln𝛿𝑛b𝑛 − ln𝐵
ln (1 − 𝛽`) ≤ 𝑘𝑛 . (27)

Then, setting b𝑛= 1
𝑛𝑝

for 𝑝 >0, we obtain the convergence result:

Corollary 4.11. For the leader’s perturbation schedule {𝛿𝑛}𝑛≥0,
define the commitment times as

𝑘𝑛 =

⌈
2
ln𝛿𝑛 − ln𝐵 − 𝑝 ln𝑛

ln(1 − 𝛽`)

⌉
(28)

for 𝑝 > 0 and 𝛽 ∈ (0, 1
𝐾2
]. Under Assumptions 4.1 through 4.4,

and Assumptions 4.8 and 4.10, if the follower updates their strategy
using gradient ascent with step-size 𝛽 , then the leader strategies 𝑥𝑛
computed by Hi-C converge to 𝐻 almost surely as 𝑛 →∞.

The specified commitment schedule gives us 1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤

1
𝑛𝑝

, and so {𝑘𝑛}𝑛≥0 satisfies Assumption 4.5. The result then follows
immediately from Theorem 4.6. The assumption that the follower’s
payoffs are strongly concave is restrictive, but makes intuitive sense
in this setting. The only information the leader can obtain about the
follower’s asymptotic best-responses is through their finite time
adaptation to the leader’s current strategy. If, over some subset
𝑆 ⊂ Y containing 𝑟 (𝑥), the curvature of 𝑓2 is allowed to be arbi-
trarily small, then once the follower’s strategy reaches 𝑆 it may
converge to 𝑟 (𝑥) arbitrarily slowly. From the leader’s perspective,
it would appear that the follower has already settled on a best-
response, such that the leader may over- or under-estimate the
value of their current strategy. It is therefore reasonable to require

that the leader have some information about how fast the follower’s
strategy should be expected to converge. In Corollary 4.11, the nec-
essary commitment schedule depends on 𝛽`, which also determines
the follower’s convergence rate.

5 DISCUSSION
A major motivation for our interest in “uncoupled” learning in
general sum games is the problem of ad hoc cooperation between
humans and AI, where the AI cannot assume anything about how
the human’s behavior will change over time. In such settings, the
human and AI will need to adapt to one another simultaneously.
Previous analysis of naive simultaneous learning updates such as
SGA has suggested that such learning processes may be highly un-
stable, and may fail to converge to good joint strategies. Research
in differentiable games has in recent years focused on the types of
centralized training settings commonly arising in deep learning.
Therefore, many of training algorithms developed for this setting
require that one or both learners have detailed knowledge about the
other’s loss function and learning update. Such methods, and corre-
sponding theoretical analysis, are therefore not directly applicable
to human–AI interaction. Our work overcomes this limitation.

Our approach also has the potential to be useful in centralized
training as well. Compared to the coupled hierarchical gradient up-
date, Hi-C will generally have much lower per-step computational
costs. An open question, however, is whether there is a trade-off
between per-step complexity and the number of training steps re-
quired. It is possible that in high-dimensional settings Hi-Cwill take
much longer to converge due to noise introduces by the gradient
estimation procedure. An empirical evaluation of how Hi-C com-
pares to the coupled hierarchical gradient update, or other coupled
approaches such as LOLA when scaled to high-dimensional train-
ing problems such as GANs or multi-agent reinforcement learning
is an important direction for future work.

6 CONCLUSION
We have presented what is, to the best of our knowledge, the first
uncoupled learning update that can be shown to converge to dif-
ferential Stackelberg solutions for a broad class of general-sum
differentiable games. The Hi-C learning update can be implemented
without access to the follower’s payoff function or the details of
their learning update. This also means that Hi-C does not need to
estimate the gradients or Hessians of the follower’s payoffs. Our
results provide theoretical insights into uncoupled hierarchical
learning processes, where one agent must learn about the prefer-
ences of another agent through its observable behavior alone.

Immediate future directions would include expanding the class
of follower learning updates and payoff functions for which we
can provide concrete convergence guarantees. These could include
more flexible learning strategies such as stochastic gradient descent,
or no-regret learning algorithms such as online mirror descent. An-
other question is whether convergence to a Stackelberg solution
can be guaranteed for a fixed commitment time, where at each
interval the follower builds on the learning progress made in pre-
vious intervals? Finally, future work could consider convergence
guarantees for non-concave follower payoffs with multiple local
optima, and therefore, non-unique best-response functions.
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