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ABSTRACT
In multi-agent problems requiring a high degree of cooperation,
success often depends on the ability of the agents to adapt to each
other’s behavior. A natural solution concept in such settings is the
Stackelberg equilibrium, in which the “leader” agent selects the
strategy that maximizes its own payoff given that the “follower”
agent will choose their best response to this strategy. Recent work
has extended this solution concept to two-player differentiable
games, such as those arising from multi-agent deep reinforcement
learning, in the form of the differential Stackelberg equilibrium.
While this previous work has presented learning dynamics which
converge to such equilibria, these dynamics are “coupled” in the
sense that the learning updates for the leader’s strategy require
some information about the follower’s payoff function. As such,
these methods cannot be applied to truly decentralised multi-agent
settings, particularly ad hoc cooperation, where each agent only
has access to its own payoff function. In this work we present
“uncoupled” learning dynamics based on zeroth-order gradient es-
timators, in which each agent’s strategy update depends only on
their observations of the other’s behavior. We analyze the conver-
gence of these dynamics in general-sum games, and prove that
they converge to differential Stackelberg equilibria under the same
conditions as previous coupled methods. Furthermore, we present
an online mechanism by which symmetric learners can negotiate
leader-follower roles. We conclude with a discussion of the impli-
cations of our work for multi-agent reinforcement learning and ad
hoc collaboration more generally.
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1 INTRODUCTION
A central goal of multi-agent systems research has been to under-
stand the long-term behavior of autonomous learning agents that
optimize their individual strategies through repeated interaction.
The challenge here is that the agents do not have any direct control
over each other, cannot see into to the "minds" of others, and must
learn based solely on their observable behavior. In this work, we
focus on this problem in collaborative settings, where agents bene-
fit from cooperation, though they may not share the same payoff
functions [13, 29]. An important example of such a setting is ad
hoc teamwork [33, 47], where agents that have never encountered
one another before must learn to collaborate without any prior
coordination. Such settings might arise when different companies
create their own learning agents to interact with other agents or
with humans. These agents will need to collaborate, bargain, and
negotiate with each other, but would definitely prefer keeping their
utilities and internal learning mechanisms private.

Theoretical analysis of multi-agent learning dynamics allows us
to determine if and when autonomous learning agents will con-
verge to a fixed joint strategy, characterize the strategies they are
likely to converge to, and ultimately design improved learning al-
gorithms (e.g. [3, 11, 20]). Additionally, recent years have seen a
surge of interest in the dynamics of multi-agent learning, driven
by the recognition that many machine learning problems (such as
actor-critic methods in RL [49]) can be formulated as games with
continuous, high-dimensional strategy spaces and differentiable
payoff functions. Results on such differentiable games have also
found applications to multi-agent reinforcement learning [2].

In this work we consider the problem of finding hierarchical
solutions in two-player, general-sum differentiable games. In the
hierarchical model of play, the “leader” player selects their strategy
first, after which the other player (the “follower”) selects their
best-response to this strategy. The natural solution concept for the
hierarchical model is the Stackelberg equilibrium (SE), in which the
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leader’s strategy is optimal under the assumption that the follower
will play their best response to whatever strategy the leader chooses.
The hierarchical model is well suited to cooperative settings, where
the leader can play their half of an optimal joint strategy knowing
that the follower will respond appropriately.

It has recently been argued that the Stackelberg equilibrium
is also a more useful solution concept for differentiable games
than the Nash equilibrium (NE), as the SE exists in games where
the NE does not [22]. This fact has motivated the development of
“hierarchical” gradient ascent methods for finding differential Stack-
elberg equilibria (DSE), the local analogue of SE, in differentiable
games. In particular, Fiez et al. [15] have presented a hierarchical
gradient update that is shown to converge to DSE in certain differ-
entiable games. However, this coupled learning update is designed
with centralized training in mind, and the leader’s update requires
knowledge of the follower’s payoff function. Such coupled learning
methods cannot be applied to independent learning settings, where
the other agent’s payoff function is unknown. The coupled hier-
archical update also requires the Hessian of the follower’s payoff
function, and so may be computationally intractable in settings
where second-order derivatives are expensive to estimate (such as
reinforcement learning). Finally, as with most existing literature,
this learning update assumes that the roles of leader and follower
are assigned beforehand (a form of prior coordination).

The main contribution of this work is a novel uncoupled learning
update calledHierarchical learning with Commitments (Hi-C), which
does not require the leader to have access to the follower’s payoff
function or learning algorithm. Hi-C estimates the leader’s gradient
update by sampling strategies close to the leader’s current strategy,
and then committing to these “perturbed” strategies long enough
that the follower has time to adapt to them. As such, unlike previous
coupled methods, the Hi-C update is applicable to fully indepen-
dent multi-agent learning settings such as ad hoc teamwork. As an
added benefit, our method is a tractable alternative to coupled hier-
archical updates for problems where estimating the higher-order
derivatives of the payoff functions is possible but impractical. Our
main theoretical results show that, under the same conditions as
previous coupled methods, Hi-C converges to a DSE for the leader
as long as the follower’s own strategy converges to its best response
sufficiently fast. We mathematically specify what sufficiently fast
means in this context, and as an illustrative example derive a com-
mitment schedule for the case where the follower’s payoff function
is strongly concave. Furthermore, we introduce a mechanism by
which agents can “negotiate” the leader–follower role assignment in
an online fashion. This allows symmetric learners to negotiate their
roles while simultaneously solving the underlying differentiable
game. To our knowledge, this is the first negotiation process that
addresses the open question, presented in Basar [4], of determining
roles online in hierarchical play.

2 BACKGROUND
We consider the class of two-player, general-sum differentiable
games. Let X ⊆ ℜ𝑑1 and Y ⊆ ℜ𝑑2 be the strategy spaces for
players 1 and 2 respectively. In hierarchical play, we let player 1 be
the leader and player 2 the follower, unless stated otherwise. Let
𝑓𝑖 : X×Y ↦→ ℜ be the payoff function of player 𝑖 , with 𝑓𝑖 ∈ 𝐶2 (X×

Y,R) for all 𝑖 ∈ {1, 2} (i.e. 𝑓𝑖 is twice continuously differentiable).
Let ∇𝑥 𝑓𝑖 (𝑥,𝑦) and ∇𝑦 𝑓𝑖 (𝑥,𝑦) denote the gradients of 𝑓𝑖 w.r.t. player
1 and player 2’s strategies respectively. We denote by ∇𝑥𝑦 𝑓𝑖 (𝑥,𝑦) =
∇𝑦 [∇𝑥 𝑓𝑖 (𝑥,𝑦)] the Jacobian of the gradient ∇𝑥 𝑓𝑖 (𝑥,𝑦) w.r.t. 𝑦, and
define ∇𝑦𝑥 𝑓𝑖 (𝑥,𝑦), ∇𝑥𝑥 𝑓𝑖 (𝑥,𝑦), and ∇𝑦𝑦 𝑓𝑖 (𝑥,𝑦) similarly. Finally
we let ∥ · ∥ denote the Euclidean norm throughout.

When analysing learning dynamics, the “pure” strategies 𝑥 and
𝑦 of the differentiable game can be thought of as representing the
parameters of the (potentially stochastic) strategies followed by the
agents in some underlying game. For instance, any 𝑁 × 𝑁 matrix
game can be described as a differentiable game by choosingX andY
to be the 𝑁 -dimensional probability simplices. Then 𝑓𝑖 (𝑥,𝑦) would
be the expected payoff for 𝑖 in the matrix game under the mixed
strategy profile ⟨𝑥,𝑦⟩. Deep reinforcement learning agents in a
Markov game can be represented similarly, where 𝑥 and 𝑦 would be
the parameters of neural networks representing stochastic policies.
The learning dynamics therefore capture how the players update
their mixed strategies / stochastic policies over time.

2.1 Simultaneous Gradient Ascent and
Differential Nash Equilibria

A straightforward approach to solving differentiable games is si-
multaneous gradient ascent (SGA), where player 𝑖 performs gradient
ascent on its own payoff function 𝑓𝑖 , treating other players’ strate-
gies as fixed. The two-player SGA updates are defined as

𝑥𝑡+1 = 𝑥𝑡 + 𝛼1,𝑡∇𝑥 𝑓1 (𝑥𝑡 , 𝑦𝑡 ) 𝑦𝑡+1 = 𝑦𝑡 + 𝛼2,𝑡∇𝑦 𝑓2 (𝑥𝑡 , 𝑦𝑡 ), (1)

where the sequences {𝛼1,𝑡 } and {𝛼2,𝑡 } are learning rate schedules,
which may differ between the players. SGA is often the default
approach for problems described by two-player games (such as
training GANs [18]). We can also view SGA as a model of ad hoc
learning between independent agents. In the ad hoc setting, players
are only aware of their own payoff functions, and the strategies
other players follow at each stage 𝑡 of the game.

However, as it is generally the case for gradient-based learners,
we cannot expect SGA to always find global optima in the strategy
space of either player. This motivates the development of local
alternatives, including the differential Nash equilibrium (DNE).

Definition 2.1 (Differential Nash Equilibrium [41]). Let 𝜔 (𝑥,𝑦) =
(∇𝑥 𝑓1 (𝑥,𝑦),∇𝑦 𝑓2 (𝑥,𝑦)) be the individual gradients of the players’
payoff functions at (𝑥,𝑦). A strategy profile (𝑥∗, 𝑦∗) ∈ X × Y is a
differential Nash equilibrium if (I) 𝜔 (𝑥∗, 𝑦∗) = 0, (II) ∇𝑥𝑥 𝑓1 (𝑥∗, 𝑦∗)
and ∇𝑦𝑦 𝑓2 (𝑥∗, 𝑦∗) are negative definite.

Previous work has shown that gradient-based learning dynamics
such as SGA can converge to DNE in specific classes of games [23,
41]. However, the main issue with DNEs is that they fail to exist in
some games, which constrains the class of games they are applicable
to. For instance, Nash equilibria exist for convex costs (i.e. concave
payoffs) on compact and convex strategy spaces, and DNE exists if
these conditions, as described in Başar and Olsder [7, Theorem 4.3
& Chapter 4.9], are met locally within the neighbourhoods DNE are
defined [14]. An alternative local solution concept, discussed below,
based on Stackelberg equilibria exists in more relaxed conditions,
and is thus applicable to a wider class of games.



2.2 Hierarchical Model and Differential
Stackelberg Equilibria

In the hierarchical model, the leader selects a strategy first, and the
follower selects the best response to the leader’s strategy. Thus, the
natural solution concept in the hierarchical play is the Stackelberg
equilibrium, in which the leader chooses a strategy that maximizes
its payoff under the follower’s best response.
Definition 2.2 (Stackelberg Equilibrium (SE) [44]). Let the set
BR(𝑥) = {𝑦 | 𝑓2 (𝑥,𝑦) = max𝑦′∈Y 𝑓2 (𝑥,𝑦′)} denote the follower’s
set of best-responses when the leader plays 𝑥 . A joint strategy
(𝑥∗, 𝑦∗) ∈ X × Y is a Stackelberg equilibrium if 𝑦∗ ∈ BR(𝑥∗) and

min
𝑦∈BR(𝑥∗ )

𝑓1 (𝑥∗, 𝑦) ≥ min
𝑦∈BR(𝑥 )

𝑓1 (𝑥,𝑦) (2)

for all 𝑥 ∈ X. Such an 𝑥∗ is a Stackelberg solution for the leader.
Note that for the SE to be well-defined, the follower must have

a tie-breaking mechanism, and definition 2.2 assumes that the fol-
lower breaks ties so as to minimize the leader’s payoffs. Therefore,
a Stackelberg solution maximizes the leader’s worst-case payoff
assuming the follower will act rationally, and in zero-sum games
the Stackelberg solution guarantees the leader will receive at least
its security value. Recent work [15, 22] has shown that the hierar-
chical model can be applied to differentiable games as well. While a
differentiable game may possess no Nash equilibria, a Stackelberg
equilibrium will always exist so long as the strategy spaces X and
Y are compact [7, Theorem 4.8 & Chapter 4.9]. Algorithms based
on the hierarchical model have proven successful in training gener-
ative adversarial networks [14, 32] and actor–critic methods [49].

Definition 2.2 assumes that both the leader and the follower have
found global optima in their respective strategy spaces. As gradient-
based learners cannot guarantee convergence to a global optimum
in general, applying the hierarchical model to differentiable games
requires a local version of the SE referred to as the differential
Stackelberg equilibrium (DSE) [14]. The definition of DSE starts
with the following observation. Given a point (𝑥∗, 𝑦∗) ∈ X × Y
such that ∇𝑦 𝑓2 (𝑥∗, 𝑦∗) = 0 and 𝑑𝑒𝑡 (∇𝑦𝑦 [𝑓2 (𝑥∗, 𝑦∗)]) ≠ 0, there
exists a continuously differentiable local best-response function
𝑟 : U1 ↦→ Y for the follower, whereU1 ⊂ X is a neighbourhood
of (𝑥∗, 𝑦∗). Under this notation, the leader’s objective function be-
comes 𝑓1 (𝑥, 𝑟 (𝑥)), and so a local optimum 𝑥∗ for the leader will sat-
isfy ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = 0, where ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = ∇𝑥 𝑓1 (𝑥, 𝑟 (𝑥)) +
[∇𝑦 𝑓1 (𝑥, 𝑟 (𝑥)]⊤∇𝑥𝑟 (𝑥). Then, a DSE is defined as follows.
Definition 2.3 (Differential Stackelberg Equilibrium [14]). A strat-
egy profile (𝑥∗, 𝑦∗) ∈ X × Y with 𝑟 (𝑥∗) = 𝑦∗, is a differential
Stackelberg equilibrium (DSE) if: (I) ∇𝑥 [𝑓1 (𝑥∗, 𝑟 (𝑥∗))] = 0 and
∇𝑦 [𝑓2 (𝑥∗, 𝑦∗)] = 0, and (II)∇𝑥𝑥 [𝑓1 (𝑥∗, 𝑟 (𝑥∗))] and∇𝑦𝑦 [𝑓2 (𝑥∗, 𝑦∗)]
are negative definite. Furthermore, any 𝑥∗ satisfying these condi-
tions is a differential Stackelberg solution (DSS) for the leader.

Intuitively, the condition (II) ensures that 𝑥∗ and 𝑦∗ are local
maxima of the player’s individual objectives, rather than minima
or saddle points. Note that conditions (I) and (II) do not imply
that ∇𝑥 𝑓1 (𝑥∗, 𝑦∗) = 0, and so DSE may not always be stable under
gradient ascent on 𝑓1. In fully-cooperative games, all agents have
the same reward function (i.e. 𝑓1 = 𝑓2). In that case, we have the
following proposition, which states that learning the DSE instead
of DNE does not break results for the fully-cooperative case.

Proposition 2.4 (Fully-cooperative Multi-agent RL and DSE). Dif-
ferential Stackelberg equilibria and differential Nash equilibria are
equivalent in fully-cooperative games where 𝑓1 = 𝑓2.

2.3 Hierarchical Gradient Update
While a natural approach to finding DSE is to perform gradient
ascent on the leader’s objective function 𝑓1 (𝑥, 𝑟 (𝑥)), we will gener-
ally not have a closed-form expression for 𝑟 (𝑥). Fortunately, for a
joint strategy (𝑥,𝑦) ∈ X ×Y for which 𝑦 = 𝑟 (𝑥) and ∇𝑦𝑦 𝑓2 (𝑥,𝑦) is
non-singular, the implicit function theorem provides a closed-form
expression for ∇𝑥𝑟 (𝑥) as a function of 𝑥 and 𝑦 [15]. When 𝑦 = 𝑟 (𝑥),
we have ∇𝑥𝑟 (𝑥) = −

(
∇𝑦𝑦 𝑓2 (𝑥,𝑦)

)−1 ∇𝑥𝑦 𝑓2 (𝑥,𝑦). The gradient of
the leader’s objective then becomes

∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = ∇𝑥 𝑓1 (𝑥,𝑦)

− ∇𝑦 𝑓1 (𝑥,𝑦)⊤
(
∇𝑦𝑦 𝑓2 (𝑥,𝑦)

)−1 ∇𝑥𝑦 𝑓2 (𝑥,𝑦)
= 𝐷 (𝑥,𝑦) (3)

Evaluating 3 requires knowing the value of 𝑦 = 𝑟 (𝑥). One way
to compute the leader’s gradient update is then to optimize 𝑦 via
gradient ascent on 𝑓2 while keeping 𝑥 constant, and allowing 𝑦
to converge to 𝑟 (𝑥) before performing each gradient step for the
leader’s strategy. Fiez et al. [15] present a more practical, two-
timescale algorithm in which the leader and follower strategies are
updated simultaneously, with the follower using a faster learning
rate than the leader. When we may only have noisy estimates of the
gradients, the two-timescale hierarchical gradient updates become:

𝑥𝑡+1 = 𝑥𝑡 + 𝛼1,𝑡 (𝐷 (𝑥𝑡 , 𝑦𝑡 ) +𝑤1,𝑡 )
𝑦𝑡+1 = 𝑦𝑡 + 𝛼2,𝑡 (∇𝑦 𝑓2 (𝑥𝑡 , 𝑦𝑡 ) +𝑤2,𝑡 ), (4)

where {𝑤1,𝑡 } and {𝑤2,𝑡 } are independent zero-mean noise sequences,
and the leader’s update 𝐷 (𝑥,𝑦) is defined as in Equation 3. To
achieve time-scale separation, the learning rate schedules are cho-
sen so that 𝛼2,𝑡 ≫ 𝛼1,𝑡 , which allows the follower’s strategy to
“track” its best response to the leader’s current strategy. If the limit
condition lim𝑡→∞

𝛼1,𝑡
𝛼2,𝑡

= 0 holds, then results on two-timescale sto-
chastic approximation (see [9, Chapter 6.1]) can be used to analyze
the convergence properties of 4.

2.4 Limitations of Coupled Learning
We can see that the explicit form of the leader’s update in Equation 3
depends on the Hessian ∇𝑦𝑦 𝑓2 of the follower’s payoff function,
which implies that the leader must know the structure of 𝑓2. This
assumption does not hold in ad hoc cooperation, where the leader
only has access to the follower’s observable behavior. Even in cen-
tralized settings where the leader can estimate the gradient and
Hessian of 𝑓2 directly, this estimation can be expensive and suffer
from high variance. This is particularly true in settings such as
reinforcement learning, where gradients (and Hessians) must be es-
timated through Monte-Carlo simulations. Other learning updates
such as LOLA also depend on estimates of the follower Hessian [16],
and so suffer form the same limitations. In this section, we remove
the limitation of coupled learning by introducing a learning algo-
rithm that estimates ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] from the follower’s behavior
alone, while maintaining similar convergence guarantees to the
two-timescale hierarchical gradient update.



3 UNCOUPLED LEARNINGWITH
COMMITMENTS

Algorithm 1 The Hi-C learning algorithm, with follower strategies
𝑦𝑡 chosen arbitrarily, and with 𝑤𝑛 being some zero-mean noise.
𝑡 (𝑛) = ∑𝑛−1

𝑚=0 𝑘𝑚 is the stage at which interval 𝑛 started.

1: Inputs: Step-sizes {𝛼𝑛}𝑛≥0, perturbation schedule {𝛿𝑛}𝑛≥0,
commitment schedule {𝑘𝑛}𝑛≥0.

2: Initialize: sample 𝑥0 from X
3: for step 𝑛 = 0, 1, . . . do
4: sample Δ𝑛 uniformly from {−1, 1}𝑑1 .
5: 𝑥𝑛 ← 𝑥𝑛 + 𝛿𝑛Δ𝑛
6: for stage 𝑡 = 𝑡 (𝑛), . . . , 𝑡 (𝑛) + 𝑘𝑛 − 1 do
7: play 𝑥𝑛 .
8: observe 𝑦𝑛 ← 𝑦𝑡 .
9: end for
10: for dimension 𝑖 = 1, . . . , 𝑑1 do
11: 𝑥𝑖

𝑛+1 = 𝑥𝑖𝑛 +
𝛼𝑛
𝛿𝑛Δ𝑖

𝑛
[𝑓1 (𝑥𝑛, 𝑦𝑛) +𝑤𝑛]

12: end for
13: end for

From the leader’s perspective, the problem of finding a differen-
tial Stackelberg equilibrium is simply that of finding a local max-
imum of 𝑓1 (𝑥, 𝑟 (𝑥)), where 𝑟 (𝑥) is the follower’s best response
when the leader chooses 𝑥 as their strategy. The challenge in the
uncoupled setting is that the leader cannot evaluate ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))]
directly, since it cannot evaluate the Jacobian ∇𝑥𝑟 (𝑥) as it does
not have access to the follower’s payoff function 𝑓2 on which 𝑟 (𝑥)
depends. The leader can, however, estimate the value of 𝑟 (𝑥) (and
therefore 𝑓1 (𝑥, 𝑟 (𝑥))) by simply observing the follower’s response
when it plays strategy 𝑥 . A natural approach then is to replace
gradient ascent with a gradient-free learning rule that only requires
an unbiased estimate of 𝑓1 (𝑥, 𝑟 (𝑥)), and not of ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))].

We first consider the hypothetical case where the leader has
access to an oracle for 𝑟 (𝑥). This oracle allows the leader to eval-
uate 𝑓1 (𝑥, 𝑟 (𝑥)) for any 𝑥 ∈ X. We can then apply simultaneous
perturbation stochastic approximation (SPSA) [45] to approximate
gradient ascent on 𝑓1 (𝑥, 𝑟 (𝑥)). Specifically, we will derive Hi-C from
the one-sample form of SPSA [46]. For all 𝑛 ≥ 0, let Δ𝑛 be indepen-
dently and uniformly sampled from {−1, 1}𝑑1 , and let {𝛿𝑛}𝑛≥0 be a
decreasing perturbation schedule. Let {𝑤𝑛}𝑛≥0 be a sequence of i.i.d.
variables (with zero-mean and uniformly bounded variance) repre-
senting noise in the evaluation of 𝑓1. The element-wise one-sample
SPSA update is then

𝑥𝑖𝑛+1 = 𝑥𝑖𝑛 + 𝛼𝑛
𝑓1 (𝑥𝑛 + 𝛿𝑛Δ𝑛, 𝑟 (𝑥𝑛 + 𝛿𝑛Δ𝑛)) +𝑤𝑛

𝛿𝑛Δ𝑖𝑛
(5)

for all 𝑖 ∈ [1, 𝑑1]. SPSA estimates the direction of the gradient by
sampling points near the current strategy 𝑥𝑛 . Going forward, let
𝑥𝑛 = 𝑥𝑛 + 𝛿𝑛Δ𝑛 denote the “perturbed” strategy evaluated at step 𝑛.
The noise terms𝑤𝑡 account for settings the leader can only observe
an unbiased estimator of 𝑓1 (e.g., a single policy roll-out).

Estimating 𝑟 (𝑥𝑛). In truly uncoupled settings the leader has no
way of directly computing 𝑟 (𝑥𝑛). What the leader can do is observe
the strategies played by the follower, which presumably updates its

own strategy so as to maximize its payoff under 𝑓2. This suggests
an asynchronous, two-timescale learning process, in which the
leader commits to playing the perturbed strategy 𝑥𝑛 for some 𝑘𝑛
stages before updating 𝑥𝑛 . For sufficiently large 𝑘𝑛 we should hope
that after 𝑘𝑛 stages the follower’s strategy will have approximately
converged to its best-response 𝑟 (𝑥𝑛).

Under the Hi-C learning update (Algorithm 1), at each interval
𝑛 ≥ 0 the leader samples a perturbed strategy 𝑥𝑛 , and then plays
this strategy for the next 𝑘𝑛 stages. After 𝑘𝑛 stages, the leader
updates its strategy element-wise as

𝑥𝑖𝑛+1 = 𝑥𝑖𝑛 + 𝛼𝑛
𝑓1 (𝑥𝑛, 𝑦𝑛) +𝑤𝑛

𝛿𝑛Δ𝑖𝑛
(6)

where the follower’s final strategy within interval 𝑛, denoted by
𝑦𝑛 , is used as an estimate of 𝑟 (𝑥𝑛). This gradient estimator has
bounded variance, since 𝑓1 is bounded on 𝑋 × 𝑌 and 𝑤𝑛 is i.i.d.
noise with bounded variance. To reduce variance we can optionally
use 𝑓1 (𝑥𝑡 , 𝑦𝑛−1) as a baseline value, as 𝑦𝑛−1 is independent of Δ𝑛 .

3.1 Convergence Analysis
In this section we make no assumptions about the specifics of the
follower’s learning update or their payoff function, and instead
prove convergence of the leader’s strategy under a generic assump-
tion about the convergence rate of the “tracking error” ∥𝑦𝑛−𝑟 (𝑥𝑛)∥
between the follower’s strategy and its best-response (asm. 3.5). In
general, this assumption can be satisfied by choosing a long enough
commitment schedule for the leader. As an illustrative example, in
Section 3.2 we derive a commitment schedule {𝑘𝑛}𝑛≤0 for followers
with strongly concave payoff functions that ensures the tracking
error will decrease fast enough to satisfy this assumption.

In Hi-C, the follower is assumed to update their strategy at
every stage 𝑡 , while the leader only performs an update after 𝑘𝑛
stages. Let 𝑡 (𝑛) = ∑𝑛−1

𝑚=0 𝑘𝑚 be the stage at which the leader begins
its 𝑛th commitment interval, and let 𝑛(𝑡) = max{𝑛 : 𝑡 (𝑛) ≤ 𝑡}
be the current interval at stage 𝑡 . We let 𝑥𝑛 (𝑛 ≥ 0) denote the
leader’s mean strategy after 𝑛 updates, or 𝑡 (𝑛) stages, and let 𝑦𝑡
denote the strategy the follower played at stage 𝑡 . We then have
𝑦𝑛+1 = 𝑦 (𝑡 (𝑛)+𝑘𝑛−1) , the last strategy the follower played during
the 𝑛th commitment interval. We prove convergence of Hi-C under
assumptions that are standard in the analysis of previous work from
simultaneous perturbation methods [8, Chapter 5] and differential
Stackelberg equilibria (asm. 3.1, 3.2, 3.3, and 3.4).

Assumption 3.1. There exists a unique best-response function
𝑟 : X ↦→ Y that maps leader strategies to follower’s best-responses.
Furthermore, 𝑟 is 𝐿𝑟 -Lipschitz and 𝐾𝑟 -smooth.

Note that the assumption 3.1 does not restrict the follower’s
payoff function to have a unique optimizer for a given 𝑥 , but sim-
ply requires that the follower breaks ties in an arbitrary yet fixed
way. This is a common assumption in hierarchical play, and it is
needed for the SE to be well-defined. The leader also does not make
any assumptions on how the follower breaks ties; the tie-breaking
mechanism is abstracted away into the follower’s best-response
function 𝑟 , which is estimated from observed behaviour.

Assumption 3.2. 𝑥𝑛 and 𝑦𝑡 are bounded almost surely:

sup
𝑛≥0
∥𝑥𝑛 ∥ < ∞ and sup

𝑡≥0
∥𝑦𝑡 ∥ < ∞ a.s. (7)



This immediately implies that 𝑥𝑛 and 𝑦𝑛 are bounded a.s., and
because 𝑟 is Lipschitz, it implies 𝑟 (𝑥𝑛) is bounded a.s. as well. In
practice, the assumption that the strategies remain bounded can be
enforced by choosing X and Y to be bounded, and projecting the
strategies back to X and Y whenever necessary.

Assumption 3.3. The leader’s payoff function 𝑓1 (𝑥,𝑦) is𝐿1-Lipschitz,
and 𝐾1-smooth in both of its arguments.

Assumption 3.3 implies that ∥∇𝑦 𝑓1 (𝑥,𝑦)∥ ≤ 𝐿1 for all (𝑥,𝑦) ∈
X × Y. Combined with Assumption 3.1, it also implies that the
leader’s hierarchical objective function 𝑔(𝑥) = 𝑓1 (𝑥, 𝑟 (𝑥)) is also
Lipschitz and smooth.

Assumption 3.4. The step-size schedule {𝛼𝑛}𝑛≥0 and perturba-
tion schedule {𝛿𝑛}𝑛≥0 satisfy

lim
𝑛→∞

𝛼𝑛 = 0, lim
𝑛→∞

𝛿𝑛 = 0,
∞∑︁
𝑛=0

𝛼𝑛 = ∞,
∞∑︁
𝑛=0

𝛼2
𝑛

𝛿2
𝑛

< ∞. (8)

The decreasing magnitude 𝛿𝑛 of the perturbations means that
eventually even small errors in the approximation of 𝑟 (𝑥𝑛) could
lead to large errors in the estimate of the gradient. Therefore, other
than the standard assumptions listed above, the following generic
assumption on the rate of convergence of the follower’s tracking
error must be satisfied via an appropriate commitment schedule.

Assumption 3.5. Define Y𝑛 = ∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥, for 𝑛 ≥ 0. The com-
mitment and perturbation schedules {𝑘𝑛}𝑛≥0 and {𝛿𝑛}𝑛≥0 satisfy

lim
𝑛→∞

Y𝑛

𝛿𝑛
= 0 and sup

𝑛≥0

Y𝑛

𝛿𝑛
< ∞ a.s. (9)

Under Assumption 3.5, the error introduced by using 𝑦𝑛 rather
than 𝑟 (𝑥𝑛) is bounded and 𝑜 (1) almost surely, and so becomes
negligible asymptotically. To see this, we rewrite Equation 6 as

𝑥𝑖𝑛+1 = 𝑥𝑖𝑛 + 𝛼𝑛
(
𝑓1 (𝑥𝑛, 𝑟 (𝑥𝑛)) +𝑤𝑡

𝛿𝑛Δ𝑖𝑛
+ [𝑖𝑛

)
(10)

where

[𝑖𝑛 =
𝑓1 (𝑥𝑛, 𝑦𝑛+1) − 𝑓1 (𝑥𝑛, 𝑟 (𝑥𝑛))

𝛿𝑛Δ𝑖𝑛
≤ 𝐿1∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥

𝛿𝑛Δ𝑖𝑛
(11)

since 𝑓1 is 𝐿1-Lipschitz by Assumption 3.3. We then have

sup
𝑛≥0
|[𝑖𝑛 | ≤ sup

𝑛≥0

𝐿1∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥
𝛿𝑛

= sup
𝑛≥0

𝐿1
Y𝑛

𝛿𝑛
< ∞ a.s. (12)

where the final inequality comes from the fact that sup𝑛≥0
Y𝑛
𝛿𝑛

is
bounded almost surely by Assumption 3.5. We can also see that
lim𝑛→∞ |[𝑖𝑛 | = 0 almost surely, as Y𝑛

𝛿𝑛
→ 0 a.s.. We are now ready

to state our main convergence result:

Theorem 3.6. Let 𝐻 ⊆ X be the set {𝑥 ∈ X : ∇𝑥 [𝑓1 (𝑥, 𝑟 (𝑥))] = 0}.
Assume 𝐻 ≠ ∅, and that Assumptions 3.1–3.5 are satisfied under the
Hi-C update (Algorithm 1). Then the leader’s strategy 𝑥𝑛 will converge
to 𝐻 almost surely as 𝑛 →∞.

Proof sketch: This result follows from Bhatnagar et al. [8, Theo-
rem 5.2] by noting that the Hi-C update in Equation 6 is equivalent
to the single measurement SPSA update (Equation 5) save for the
bounded, 𝑜 (1) error term [𝑖𝑛 , which becomes negligible asymptoti-
cally (see [9, Chapter 2]. This result shows that the Hi-C update con-
verges to a relatively small subset of X that, if they exist, contains

the differential Stackelberg solutions. With further assumptions on
𝐻 , we can show that 𝑥𝑛 converges to a DSS almost surely.

Corollary 3.7. Additionally, assume that 𝐻 consists only of isolated,
asymptotically stable equilibria of the ODE ¤𝑥 (𝑡) = ∇𝑥 [𝑓 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))].
Then, under the Hi-C update, 𝑥𝑛 will converge to a differential Stack-
elberg solution of the game (𝑓1, 𝑓2) almost surely as 𝑛 →∞.

This follows from the fact that if 𝑥 ∈ 𝐻 is an asymptotically
stable equilibrium of ¤𝑥 (𝑡) = ∇𝑥 [𝑓 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))], then the Hessian
∇𝑥𝑥 [𝑓 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))] must be negative definite. Combined with
∇𝑥 [𝑓 (𝑥 (𝑡), 𝑟 (𝑥 (𝑡)))] = 0, this satisfies the requirements of Defi-
nition 2.3. At first it may seem contradictory that we can prove
convergence to a DSS when these are not guaranteed to exist. The
conditions under which Corollary 3.7 holds true, however, are pre-
cisely those conditions under which a DSS does exist, that is, when
𝑓1 (𝑥, 𝑟 (𝑥)) has a strict local minimum in X.

Note that these results make no direct assumptions about the
follower’s payoff function or learning update. Indeed, if we relax the
second part of Assumption 3.1 they could be satisfied for finite Y
and discontinuous 𝑟 (𝑥). We simply require that for every 𝑥 ∈ X the
follower’s strategy will converge to some unique fixed point 𝑟 (𝑥) at
a sufficiently fast rate relative to the leader’s commitment schedule.
In the next section we will consider some specific scenarios in
which this requirement is satisfied, and howwe can select a suitable
commitment schedule given some information about the follower.

3.2 Choosing the Commitment Schedule
In order to derive specific commitment schedules that provably
satisfy Assumption 3.5, we need finite-time convergence rate guar-
antees for the follower’s strategy. It is important to note that the
Hi-C algorithm itself does not require the knowledge of the conver-
gence rate. The leader can always choose the commitment schedule
with respect to the worst known upper-bounds of first-order op-
timisation methods, assuming the slowest rate for the follower.
However, when more is known about the follower’s rate of conver-
gence, we can use the rate to derive better commitment schedules.
To illustrate how to derive 𝑘𝑛 from known rates, we will consider
one such well-studied case where the follower’s objective func-
tion is strongly concave. Throughout this section we will make
additional assumptions on the payoff functions 𝑓2, and the best-
response function 𝑟 . These assumptions are needed only for the
results within section 3.2.

Assumption 3.8. ∀𝑥 ∈ X, 𝑓2 (𝑥,𝑦) is 𝐾2-smooth and `-strongly
concave w.r.t. 𝑦.

Under the assumption 3.8, deterministic gradient ascent on 𝑓2
with a fixed step-size schedule 𝛽𝑡 = 𝛽 is sufficient for the follower’s
strategy to converge to its best-response.

Proposition 3.9 (Nesterov [34, Chapter 2]). Let the follower update
its strategy using deterministic gradient ascent with a fixed step-size
𝛽 ∈ (0, 1

𝐾2
], such that

𝑦𝑡+1 = 𝑦𝑡 + 𝛽∇𝑦 𝑓2 (𝑥𝑛 (𝑡 ) , 𝑦𝑡 ) (13)

then for any stage 𝑡 ≥ 0, and any 𝑘 ∈ [1, 𝑘𝑛 (𝑡 ) ], we have

∥𝑦𝑡+𝑘 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ ≤ (1 − 𝛽`)
𝑘
2 ∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ . (14)



Imaginewe are given step-size and perturbation schedules {𝛼𝑛}𝑛≥0
and {𝛿𝑛}𝑛≥0 satisfying Assumption 3.4. To find a suitable commit-
ment schedule, we choose an arbitrary sequence {b𝑛}𝑛≥0 such that
lim𝑛→∞ b𝑛 = 0 and sup𝑛 b𝑛 < ∞. We then need a commitment
schedule {𝑘𝑛}𝑛≥0 such that:

1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤ b𝑛 (15)

for all 𝑛 ≥ 0. To apply Proposition 3.9, we need to be able to bound
∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡 ) )∥ for all 𝑡 ≥ 0. Previously we simply required that
the strategies be bounded almost surely (Assumption 3.2). Now will
will assume that this bound is deterministic, and known in advance.

Assumption 3.10. There exists a deterministic constant 𝐵 < ∞
such that sup𝑡≥0 ∥𝑦𝑡 ∥ < 𝐵

2 and sup𝑛≥0 ∥𝑟 (𝑥𝑛)∥ < 𝐵
2 almost surely.

This always holds if 𝑦𝑡 is constrained to a bounded set Y. We
then have sup𝑡≥0 ∥𝑦𝑡 − 𝑟 (𝑥𝑛 (𝑡))∥ ≤ 𝐵 almost surely. Then, under
Assumptions 3.8 and 3.10, using the proposition 3.9, we have that

1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤

1
𝛿𝑛
(1 − 𝛽`)

𝑘𝑛
2 𝐵. (16)

Upper-bounding this by b𝑛 , we have

1
𝛿𝑛
(1 − 𝛽`)

𝑘𝑛
2 𝐵 ≤ b𝑛 (17)

2
ln𝛿𝑛b𝑛 − ln𝐵

ln (1 − 𝛽`) ≤ 𝑘𝑛 . (18)

Setting b𝑛= 1
𝑛𝑝

for 𝑝 >0, we obtain the following convergence result:

Corollary 3.11. For the leader’s perturbation schedule {𝛿𝑛}𝑛≥0,
define the commitment times as

𝑘𝑛 =

⌈
2

ln𝛿𝑛 − ln𝐵 − 𝑝 ln𝑛
ln(1 − 𝛽`)

⌉
(19)

for 𝑝 > 0 and 𝛽 ∈ (0, 1
𝐾2
]. Under Assumptions 3.1 through 3.4, 3.8

and 3.10, if the follower updates their strategy using deterministic gra-
dient ascent with step-size 𝛽 , then the leader strategies 𝑥𝑛 computed
by Hi-C converge to 𝐻 almost surely as 𝑛 →∞.

The specified 𝑘𝑛 gives us 1
𝛿𝑛
∥𝑦𝑛 − 𝑟 (𝑥𝑛)∥ ≤ 1

𝑛𝑝
, and so {𝑘𝑛}𝑛≥0

satisfies Assumption 3.5. The result then follows immediately from
Theorem 3.6. For 𝛿𝑛 = 𝛿

𝑛𝑞 , this yields 𝑘𝑛 = 𝑂 (ln𝑛).
The assumption that the follower’s payoffs are strongly concave

makes intuitive sense in this setting. The only information the
leader can obtain about the follower’s asymptotic best-responses is
through their finite time adaptation to the leader’s current strategy.
If, over some subset 𝑆 ⊂ Y containing 𝑟 (𝑥), the curvature of 𝑓2
is allowed to be arbitrarily small, then once the follower’s strat-
egy reaches 𝑆 it may converge to 𝑟 (𝑥) arbitrarily slowly. From the
leader’s perspective, it would appear that the follower has nearly
settled on a best-response, such that the leader may over- or under-
estimate the value of their current strategy. It is therefore reasonable
to require that the leader have some information about how fast
the follower’s strategy should converge. In Corollary 3.11, the nec-
essary commitment schedule depends on 𝛽`, which determines the
follower’s convergence rate.

Figure 1: Hi-C paired with gradient ascent in the Cournot
duopoly. Averaged over 32 runs (shaded regions show ranges).

3.3 Numerical Experiments
We demonstrate the convergence behavior of Hi-C in a simple dif-
ferentiable game corresponding to the Cournot duopoly model [43]
with linear prices and costs. Here 𝑥,𝑦 ∈ ℜ are the quantities of
some good produced by each player, with payoffs defined as

𝑓1 (𝑥,𝑦) = 𝑥 [50 − (𝑥 + 𝑦)] − 𝑥 (20)
𝑓2 (𝑥,𝑦) = 𝑦 [50 − (𝑥 + 𝑦)] − 𝑦 (21)

The payoff each player receives depends on the price per unit, which
is a strictly decreasing function of the total quantity produced. Note
that the unique Stackelberg equilibrium of this game (as well as
the unique DSE) is 𝑥 = 24.5, 𝑦 = 12.25, such that 𝑓1 (𝑥,𝑦) ≈ 300 and
𝑓2 (𝑥,𝑦) ≈ 150. Figure 1 shows that Hi-C converges to this solution
when paired with a gradient ascent learner in the Cournot game.
Initially the gradient ascent learner (the follower) maximizes its
payoff under the assumption that the leader’s strategy is fixed. Over
time Hi-C (the leader) increases its production quantity, knowing
that the follower will reduce its own production to maintain its
profits. In these experiments Hi-C uses a learning rate schedule
of 𝛼𝑛 = .001𝑛−.1 and a perturbation schedule of 𝛿𝑛 = 𝑛−.6, with
the corresponding commitment schedule computed by Equation 19.
The gradient ascent learner uses a fixed learning rate of 0.1.1

4 ROLE NEGOTIATION
So far we have assumed that the leader and follower roles are

assigned by some external process. In this section we will briefly
explore ways in which uncoupled learners might “negotiate” who
will lead and who will follow during the training process itself. In
principle, two independent agents could use a variety of protocols
(e.g., a coin toss) to agree upon their respective roles before training
begins. Here, however, we consider whether roles can themselves
be learned in a way that maximizes each player’s individual payoffs.
In some settings learning roles as part of the training process may
be necessary or advantageous. If two independent agents have
never interacted with one another before, they are unlikely to

1Code available at: https://github.com/rtloftin/Hi-C/tree/aamas2024

https://github.com/rtloftin/Hi-C/tree/aamas2024


Algorithm 2 The meta-learning update for role negotiation. Main-
tains a “meta-strategy” parameterized by𝑤𝑛 , and samples its role
from its current strategy at each meta-learning interval.
1: Inputs: Step-sizes {𝛽𝑛}𝑛≥0, perturbation schedule {^𝑛}𝑛≥0,

commitment schedule {𝜏𝑛}𝑛≥0.
2: Initialize:𝑤0 ← 0
3: for step 𝑛 = 0, 1, . . . do
4: sample Δ uniformly from {−1, 1}.
5: �̃�𝑛 ← 𝑤𝑛 + ^𝑛Δ𝑛 .
6: sample 𝑧𝑛 uniformly from [0, 1].
7: if 𝑧𝑛 < sin2 (�̃�𝑛) then
8: follow the Hi-C update (Algorithm 1) on 𝑓1 for 𝜏𝑛 stages
9: else
10: follow the gradient ascent update on 𝑓1 for 𝜏𝑛 stages
11: end if
12: collect observed joint strategies {𝑥𝑛

𝑖
} and {𝑦𝑛

𝑖
}

13: 𝑎𝑛 ← 1
𝜏𝑛

∑𝜏𝑛
𝑖=1 𝑓1 (𝑥

𝑛
𝑖
, 𝑦𝑛
𝑖
)

14: 𝑤𝑛+1 = 𝑤𝑛 + 𝛽𝑛𝑎𝑛
^𝑛Δ𝑛

15: end for

share a convention for negotiating roles. In a fully cooperative task,
hierarchical learning will be unnecessary, and it would be desirable
if both players learned to use the follower’s faster gradient update.

Our goal then is to allow each player to learnwhich role (leader or
follower) will yield the highest payoffs given its partner’s behavior.
A straightforward approach is to wrap the hierarchical learning pro-
cess in a “meta-learning” process, where a pair of independent meta-
learners each commits to a particular role for some pre-determined
number of steps, and then evaluates their average payoff under
that role given the role their partner chose. Importantly, the meta-
learning process is symmetric, with no leader-follower hierarchy.

Algorithm 2 describes the meta-learning update for player 1 (the
update for player 2 only differs in the use of the payoff function
𝑓2). The length of the meta-learning intervals are described by a
fixed schedule {𝜏𝑛}𝑛≥0, which, as with the Hi-C update, we assume
will grow arbitrarily large over time. This commitment schedule,
along with the step-size schedule {𝛽𝑛}𝑛≥0, is assumed to be shared
between both meta-learners. Each meta-learner maintains a “meta-
strategy” parameterized by a single scalar value 𝑤𝑛 ∈ ℜ. We let
𝑝 (𝑤𝑛) = sin2 (𝑤𝑛) be the probability of choosing to lead at interval
𝑛, with 1 − 𝑝 (𝑤𝑛) = cos2 (𝑤𝑛) being the probability of choosing
to follow. This parameterization allows 𝑤 to be unbounded, and
allows us to represent pure strategies using finite values of𝑤 . At
each interval 𝑛 the meta-learner for player 1 approximates gradient
ascent on its expected payoff

𝑓𝑛 (𝑤1) = [𝑝 (𝑤1), 1 − 𝑝 (𝑤1)]Û1
𝑛 [𝑝 (𝑤2

𝑛), 1 − 𝑝 (𝑤2
𝑛)]⊤ (22)

where 𝑤2
𝑛 denotes player 2’s meta-strategy, while the matrix Û1

𝑛

denotes the expected average payoff for player 1 under each of the
four possible joint role assignments. Note that the expectation Û1

𝑛

is conditioned on the underlying joint strategy (𝑥,𝑦) at the start
of interval 𝑛. As with the Hi-C update, the meta-learner updates𝑤
using the single-sample variant of SPSA. Note that other approaches

to estimating the gradient ∇𝑤1 𝑓𝑛 (𝑤1), for example, using the log-
likelihood trick, would suffer from singularities when evaluated at
pure strategies (e.g.,𝑤1 = 0 or𝑤1 = 𝜋

2 ).
The fact that Û1

𝑛 may depend on the underlying joint strategy
means that, in general, we cannot apply standard stochastic ap-
proximation results to the meta-learning process alone. If we can
assume, however, that the long-term behavior of underlying learn-
ing process is asymptotically independent of its initial state (for
any possible leader-follower role assignment) then we can describe
the joint meta-learning process by the stochastic approximation

𝑤1
𝑛+1= 𝑤

1
𝑛+𝛽𝑛

[
[∇𝑝 (𝑤1

𝑛),−∇𝑝 (𝑤1
𝑛)]U1 [𝑝 (𝑤2

𝑛), 1 − 𝑝 (𝑤2
𝑛)]⊤

+ Z 1
𝑛 + Y1

𝑛

]
(23)

𝑤2
𝑛+1= 𝑤

1
𝑛+𝛽𝑛

[
[𝑝 (𝑤1

𝑛), 1 − 𝑝 (𝑤1
𝑛)]U2 [∇𝑝 (𝑤2

𝑛),−∇𝑝 (𝑤2
𝑛)]⊤

+ Z 2
𝑛 + Y2

𝑛

]
(24)

where 𝑈 1 = E[lim𝑛→∞𝑈 1
𝑛 ] and 𝑈 2 = E[lim𝑛→∞𝑈 2

𝑛 ], Z 1
𝑛 and Z 2

𝑛

are the noise terms introduced by SPSA, and 𝜖1
𝑛 and 𝜖2

𝑛 are 𝑜 (1).
This in turn converges (under the standard SA assumptions) to an
ICT invariant set of the limiting ODE:

¤𝑤1 = [∇𝑝 (𝑤1),−∇𝑝 (𝑤1)]U1 [𝑝 (𝑤2), 1 − 𝑝 (𝑤2)]⊤ (25)

¤𝑤2 = [𝑝 (𝑤1), 1 − 𝑝 (𝑤1)]U2 [∇𝑝 (𝑤2),−∇𝑝 (𝑤2)]⊤ (26)

Whether such an invariant set necessarily corresponds to a specific
leader–follower ordering will depend on the structure of the game.
In general, such a set may not correspond to an equilibrium point
of the ODE, with the players never converging to fixed roles. We
leave the characterization of games in which role negotiation can
be guaranteed to converge as an open question for future work.

5 DISCUSSION
A major motivation for our work is to understand the problem
of ad hoc collaboration between autonomous agents, both AI and
human. In this case, agents cannot assume anything about how
others’ behavior will change over time, and need to adapt to one
another simultaneously. Previous analysis of naive simultaneous
learning updates such as SGA has suggested that such learning
processes may be highly unstable, and may fail to converge to good
joint strategies. Research in differentiable games has in recent years
focused on the types of centralized training settings commonly
arising in deep learning, where some learners must have detailed
knowledge of other’s loss functions and learning updates. Thus,
these methods and their analyses are not directly applicable to ad
hoc collaboration. Hierarchical learning dynamics are well-suited
to this setting, but have previously required that the leader have
direct access to the follower’s payoff function. Our work overcomes
this critical limitation. Our approach also has the potential to be
useful in centralized training. Compared to the coupled hierarchical
gradient update, Hi-C will generally have much lower per-step com-
putational cost, though whether this offsets the potential increase
in sample complexity in practice is an open question.

Future work. Immediate future directions for this work include
expanding the class of follower learning updates and payoff func-
tions for which we can provide concrete convergence guarantees.



This could include more flexible methods such as stochastic gra-
dient descent, or no-regret learning rules such as online mirror
descent. Recent work on bi-level optimization such as Liu et al. [25]
has also provided theoretical tools for analysing convergence in
the case of non-concave follower objectives. The extension of these
results to our uncoupled setting is another important question for
future work. Finally, there are a number of open questions regard-
ing the dynamics of role negotiation. These include determining in
which classes of games the players will converge to fixed roles with
high probability, and whether the players’ average payoffs can be
guaranteed to converge even when the roles themselves do not.

6 RELATEDWORK
Differentiable Games. Previous work on gradient ascent in dif-

ferentiable games has found that simultaneous gradient ascent on
individual payoff functions can fail to converge [30, 31]. This has
motivated the development of alternative solution concepts that
are better suited to differentiable games, such as chain recurrent
sets [36] and local Stackelberg equilibria [22]. Others have proposed
modified gradient ascent approaches to achieve at least local conver-
gence to fixed-points in certain classes of games [2, 31, 42]. Similar
to our approach are methods for two-player games that update
the individual strategies on two different timescales [28, 32, 35].
As with our approach, Nouiehed et al. [35] implement timescale
separation by having the follower execute multiple gradient steps
for every leader update, though unlike our work, their leader does
not directly attempt to shape the behavior of the follower.

Hierarchical Model of Play and Role Assignment. Assuming the
follower plays an immediate best-response, previous work has also
provided lower bounds on the sample complexity of identifying
Stackelberg equilibria in Stackelberg security games [38], bandit
games [1] and Markov games [40]. The challenge in our setting is
that we must assume the follower is implementing an incremental
learning update, which may only play a true best-response asymp-
totically. Most closely related to our work is the two-timescale
hierarchical gradient update [14, 49]. Unlike our method, the hi-
erarchical gradient update requires that the leader have access to
the follower’s payoffs. The earliest analysis of leader–follower role
assignments was in Basar [4], while Basar and Haurie [6] consid-
ered the case where the roles switch between players depending on
an exogenous process. More recent work has considered the case
where players change roles depending on the game state, where
the roles are still pre-assigned for each state [5]. In the context of
strategic classification, Zrnic et al. [50] have analysed the setting
where a specific player can choose and dictate a role assignment
for everyone. To our knowledge, ours is the first result on online
negotiation of the roles during hierarchical play.

Multiagent Learning. Our work is also related to opponent shap-
ing approaches [16, 48], where one or both learners explicitly ac-
count for their partner’s learning behavior, and update their strategy
accordingly. Of these the model-free opponent shaping (M-FOS)
framework of Lu et al. [26] is closest to ours. The key differences
from ourmethod are thatM-FOS assumes the follower can be “reset"
after each interval, and only allows the follower to adapt for a fixed
number of stages. In contrast, we do not require such resets, and

explicitly account for the fact that the follower’s strategy depends
on the entire history of interaction. Hi-C also allows the follower
to learn over increasing time horizons, enabling asymptotic conver-
gence. Finally, Hi-C is conceptually similar to no-regret learning
methods for non-stationary tasks [12] and adaptive partners [39],
in which the leader commits to candidate “expert” strategies for
increasingly long time intervals.

Bi-level Optimization. The problem of finding differential Stack-
elberg equilibria can be cast as bi-level optimization. Indeed, the
hierarchical gradient update ([14, 49]) corresponds to an approx-
imate implicit differentiation (AID) method for bi-level problems.
Iterative differentiation (ITD) methods (e.g. [17, 19, 21, 37]) are
conceptually similar to our approach as well. However, both AID
and ITD methods require analytically differentiating through the
follower’s best-response function, which in turn requires the gra-
dients (and Hessians) of the follower’s payoff function. Recent
work [24] does not use Hessians, but still requires knowledge of the
follower’s objective functions. Developed for centralized training
settings such as GANs, these methods cannot be applied to settings
where the learners are truly autonomous and decentralised. While
some recent work ([10, 27]) has presented zeroth-order (gradient-
free) methods for bi-level optimization, these simulate multiple
independent copies of the follower, and so require access to the
follower’s payoffs and learning update.

7 CONCLUSION
We have presented, to the best of our knowledge, the first uncou-
pled learning update that can be shown to converge to differential
Stackelberg solutions for a broad class of general-sum differentiable
games. The Hi-C learning update for the leader agent can be im-
plemented without access to the follower’s payoff function or the
details of their learning update. This also means that Hi-C does
not need to estimate the gradients or Hessians of the follower’s
payoffs. Most importantly, our convergence results provide the-
oretical insights into uncoupled hierarchical learning processes,
where one agent must learn about the preferences of another agent
through its observable behavior alone. We have also presented the
first online role negotiation dynamics, which illustrate how agents
can strategically negotiate a leader–follower ordering as part of the
hierarchical learning process.
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