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Abstract
We present a review that unifies decision-support
methods for exploring the solutions produced by
multi-objective optimization (MOO) algorithms.
As MOO is applied to solve diverse problems, ap-
proaches for analyzing the trade-offs offered by
MOO algorithms are scattered across fields. We
provide an overview of the advances on this topic,
including methods for visualization, mining the so-
lution set, and uncertainty exploration as well as
emerging research directions, including interactiv-
ity, explainability, and ethics. We synthesize these
methods drawing from different fields of research
to build a unified approach, independent of the ap-
plication. Our goals are to reduce the entry barrier
for researchers and practitioners on using MOO al-
gorithms and to provide novel research directions.

1 Introduction
Most real-world applications include multiple stakeholders
with diverse interests. Such problems are naturally formu-
lated as multi-objective optimization (MOO) problems by
representing the stakeholders’ interests via objectives. The
objectives correspond to the stakeholders’ aims in an appli-
cation, e.g., minimizing pollution, and should be operational-
ized using meaningful metrics, e.g., the density of fine par-
ticles in the air or the air quality index. Since the objectives
may be conflicting, there may not be a single solution that is
optimal for all objectives. Which solution should ultimately
be selected depends on the people responsible for deciding
which solution to execute. This could be a single person man-
dated to make this decision, a committee of stakeholders, or
a political entity such as a city council. We will refer to these
people as the decision-makers (DMs).

The more complex the problem, the more unlikely that the
DMs can express their preferences with respect to the objec-
tives (even approximately) a priori. As such, the DMs need
to be informed about the available, possibly optimal, trade-
offs. In MOO algorithms, it is common to produce a set of
non-dominated solutions referred to as a Pareto-optimal set.
A solution x is (Pareto) non-dominated if there exists no other
solution y that is better than x on at least one objective with-

out being worse on any other objective. The set of all so-
lutions non-dominated with respect to each other form the
Pareto-optimal set. The projection of the Pareto(-optimal) set
in the objective space is called the Pareto(-optimal) front.

While the Pareto set is a general solution set, it might be
excessive when more information about the DMs is available.
Further, it can even be wrong when stochastic solutions are
allowed but are not taken into account [Vamplew et al., 2009],
or incomplete when the outcomes are stochastic and the DMs
care about the expected utility for individual outcomes rather
than having a utility for the expected outcome [Hayes et al.,
2022b]. Thus, we refer to the output of MOO as a solution
set, which can be but is not required to be a Pareto set.

Single-objective optimization (SOO) is often seen as an al-
ternative to MOO. To employ SOO, important characteris-
tics of the problem would need to be combined into a sin-
gle, scalar, function. However, using SOO for a problem
with many objectives has disadvantages [Hayes et al., 2022a].
First, finding a suitable combined-objective function (often, a
manual process) is quite challenging and it may require sim-
plifying assumptions, e.g., that the objectives are linear addi-
tive. Second, SOO is less adaptive to evolving objectives—
adding or removing an objective requires re-engineering the
objective function. Finally, combining multiple objectives
into one function loses information, particularly, when it is
not possible to collapse the underlying goals (e.g., the envi-
ronmental and economic objectives, which have different unit
values and levels of risk) into a single measure. As a result, an
SOO solution is less informative to a DM than an appropriate
solution set produced by MOO. For example, with an SOO
solution, a DM can typically only know the solution’s scalar
objective value, but with a solution set, the DM can compare
solutions in terms of the problem characteristics.

As the number of objectives increases, the number of so-
lutions in the solution set produced by an MOO algorithm
is also likely to increase. For example, for a problem with
five objectives, the size of the solution set can be in the order
of hundreds. However, for most problems, only a few final
solutions (often, only one) are desired. For example, if the
problem is to find an optimal design for a car engine, the car
manufacturer may only want one design to send to produc-
tion. Thus, a DM must analyze the solution set outputted by
MOO to identify the final solution as shown in Figure 1.
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Figure 1: Multi-objective decision-making involves computational
optimization as well as a DM’s analysis of the solution set produced
by the optimization algorithm. This survey focuses on the methods
for supporting the DM in reaching the final solution(s).

Even with as few as three or four objectives, analyzing the
trade-offs among the solutions can be overwhelming. Further,
considering multiple decision variables, dependencies among
these variables, and external factors (e.g., uncertainties) influ-
encing the optimization makes the analysis even more com-
plex. Then, how can a DM systematically explore the alter-
native solutions to produce the final solution(s)?

Unfortunately, there is no easy answer to this question.
There is no standard procedure or standard set of methods
a DM can adopt to explore the output of MOO. Further, as
MOO is applied in diverse fields, methods have been devel-
oped in different silos. Thus, there is a need to bring together
these decision-support methods in a systematic manner.

We perform a comprehensive review of decision-support
methods for MOO. Our review includes methods for (1) vi-
sualizing solution sets such as the Pareto front, (2) extracting
the knowledge from the solution sets with data mining tech-
niques, and (3) exploring uncertainty. Whereas these are es-
tablished lines of work, there are several emerging directions,
including interactive methods, explainability, and providing
support on ethical aspects such as distributive justice. We also
discuss these directions. The two (non-conflicting) objectives
of our work are to provide novel directions for researchers
and reduce the entry barrier on using MOO for practitioners.

Existing Surveys on MOO MOO is gaining increasing
attention as the advances in computational capabilities en-
able the application of MOO to problems having increasingly
large search spaces and number of objectives. Accordingly,
there have been several surveys on MOO. For example:

• Li et al. [2015] survey techniques for many objective op-
timization (a term used for MOO with at least four ob-
jectives) and identify seven categories of techniques.

• Tian et al. [2021] survey evolutionary MOO techniques.
Antonio and Coello Coello [2018] survey coevolution-
ary algorithms, which are an extension of traditional
evolutionary algorithms, for large-scale MOO.

• Hayes et al. [2022a] survey multi-objective reinforce-
ment learning and planning techniques, and argue for
a utility-based approach where the appropriate solution
set is derived from what is known about the problem and
the DM’s utility.

Surveys such as the ones above focus on the optimization

methods. In contrast, we seek to review decision-support
methods, a step following optimization (Figure 1), though
these steps may be used iteratively during decision-making.

There have been a few surveys on specific aspects of deci-
sion support for MOO. For example:

• Bandaru et al. [2017] survey exploratory data mining
methods for extracting knowledge from MOO output.

• Moallemi et al. [2018] survey exploratory modeling
methods for analyzing the robustness of MOO solutions
under deep uncertainty.

• Wang et al. [2017] survey preference modeling methods
to direct a decision-maker to a region of the Pareto front.

To the best of our knowledge, none of the existing surveys
provide a comprehensive review of decision-support meth-
ods, including all the dimensions we cover in this survey.

Organization Section 2 formulates an MOO problem, and
introduces different variants of the problem. Section 3 in-
troduces the three established categories of decision-support
methods we review. Section 4 includes emerging research di-
rections. Section 5 concludes the paper.

2 Problem Variants and Examples
As different types of MOO problems require different explo-
ration techniques, we begin with a brief overview of MOO
problems and variants, and provide motivating examples.

2.1 Multi-Objective Optimization
An MOO problem with K objectives, fk(x) : k = 1, ....,K,
involves optimizing (maximizing or minimizing) for all ob-
jectives, simultaneously. Typically, a solution x ∈ Rn is
a vector of n decision variables, x = (x1, . . . , xn), which
can be subject to constraints. Each objective function maps
a solution to an objective value. Thus, each solution can be
mapped to a point, z = (z1, . . . , zK), in the objective space.
Alternatively, as is common in modern sequential decision
making (RL or planning), a solution is described as a map-
ping from states to a probability distribution over actions.
While such a mapping can still be cast as a vector of deci-
sion variables when both the set of possible states and the set
of actions are discrete, when either is infinite (or prohibitively
large) this is is no longer possible and the mapping becomes
e.g., a neural network. Further, it is also possible that out-
comes are stochastic, and it may be useful or in fact necessary
to communicate not a single (expected) value for z, but rather
a distribution over possible outcome vectors, P (z|x).

Since the objectives of an MOO problem can be conflict-
ing with each other, the output of the optimization is typi-
cally a set of solutions. For example, a Pareto-optimal set
[Deb, 2011] is the typical solution set produced by evolution-
ary MOO techniques. In contrast, if the solutions or outcomes
can be stochastic, we may need to produce a stochastic mix-
ture [Vamplew et al., 2009] (for sequential decision making
problems, stochastic selection of one of the deterministic base
policies at the start of each episode) or a set of distributions
over outcomes [Hayes et al., 2022b] as the solution set (built
to maximise the expected utility).



2.2 Dimensions of the Problem
We identify two dimensions of MOO problems, which influ-
ence the type of decision support required.

Preference Availability Knowing the DM’s preferences is
a key aspect of multi-objective decision-making. Such prefer-
ences can be elicited (1) a priori, i.e., before the optimization
process, (2) a posteriori, i.e., after the optimization process,
or (3) interactively during the optimization process.

When the preferences are known a priori, combining dif-
ferent objectives into a single objective may be possible
[Castelletti et al., 2013], but not always desirable (e.g., scalar-
ization of unknown utility function may result in too much
uncertainty) [Roijers et al., 2013]. However, research on
preference construction [Warren et al., 2011] suggests that
preferences are context-sensitive, and are often calculated at
the time a choice is to be made. Thus, a posteriori or in-
teractive elicitation of preferences is typical. Such scenarios
require decision support as the volume and the complexity
of the choices MOO provides [Zintgraf et al., 2018] can be
overwhelming.

Solution Type The type of solution produced by MOO may
call for different types of decision support. In simple cases,
the solutions are one shot, e.g., MOO yields an optimal de-
sign for an engine that is put into production. In contrast, in
complex problems the solution can consist of decision vari-
ables that need to be implemented over time (e.g., over several
years) or space (e.g., across several countries). Such prob-
lems require decision support for analyzing, e.g., the time
sensitivity [Quinn et al., 2019] of the solutions.

2.3 Uncertainty Handling
In complex decision-making problems, such as policy and
planning problems, uncertainty about the future has to be con-
sidered. The main goal for uncertainty exploration in MOO
is to help the DMs in making informed decisions by provid-
ing them with a comprehensive understanding of the range of
possible solutions and their associated uncertainty.

There are a number of methods to understand uncertainty;
in this paper, we focus on stochastic uncertainty and deep un-
certainty [Kwakkel et al., 2016]. Stochastic uncertainty can
be represented by a probabilistic model of random phenom-
ena. Random variables are central to stochastic models. They
often refer to natural phenomena, for instance, next year’s
rainfall or next month’s water consumption patterns. If we
obtain several observations of that variable, we can estimate
its probability distribution along with various statistical mea-
sures that characterize its distribution. This style of uncer-
tainty is often represented within the simulation which is cou-
pled with MOO with which we can then obtain a probability
distribution of the outcomes. In contrast, deep uncertainty
[Lempert, 2019] refers to the uncertainty in the system that
does not have a probabilistic representation due to the lack
of observations. Deep uncertainty is concerned with vari-
ables whose statistical behavior is unknown. This concept
has gained traction for recent decision support applications
[Popper, 2019], but is not new [Bertsekas and Rhodes, 1971].

The type of decision support depends on the nature of
uncertainty, its location in the model, and severity. The

decision-support methods also depend on whether uncer-
tainty is analyzed after [McPhail et al., 2020] or during the
optimization [Bartholomew and Kwakkel, 2020].

2.4 Motivating Examples
Table 1 shows sample problems, chosen from different do-
mains, for MOO variants. We also present a sample problem
[Sari, 2022] in detail to illustrate the problem dimensions.

Table 1: Example problems for MOO variants.

MOO Variant Example problem and reference

A posteriori preference Combined heat and power
generation [Li et al., 2018]

Interactive preference Finnish forest management
[Misitano et al., 2022]

Uncertainty handling Production allocation problem
[Shavazipour et al., 2021b]

One-shot solution Building performance [Ling
and Jakubiec, 2018]

Sequential solution Multireservoir operating
policies [Quinn et al., 2019]

Example 1 (Reservoir management). The Nile Basin, which
covers ten countries, is a crucial resource for supplying water
for hydropower generation, municipal, industrial and agri-
cultural consumption. However, tensions have risen between
Ethiopia (upstream country), and Egypt and Sudan (down-
stream countries) over Ethiopia’s construction of the Grand
Ethiopian Renaissance (GERD) dam that could block the flow
of water to downstream countries and threaten their water se-
curity. Thus, it is crucial to agree on the water release policy
for the four reservoirs (one in Egypt, two in Sudan, and one
in Ethiopia) for optimal water management. This is an MOO
problem with conflicting objectives such as minimizing wa-
ter demand deficit in Egypt and Sudan, maximizing hydro en-
ergy generation in Egypt and Ethiopia. The problem involves
hydro-climatic and socio-economic uncertainties, as well as
uncertainties regarding yearly water demand growth, and hy-
drology of the major tributaries of the river. A solution is a
sequence of release decisions over the four reservoirs, at the
beginning of each month, over a 20-year time horizon.

3 Decision-Support Methods
Decision-support methods for MOO are often developed in
a problem-specific manner. Yet, these methods have com-
mon building blocks. We review three categories of decision-
support that are well-studied in the literature.

3.1 Visualization
Visualizations are a common decision-support tool for ex-
ploring an MOO solution set. Miettinen [2014] surveys
graphical methods, e.g., bar charts, value paths, spider web
charts, for visualizing a small set of alternatives in a solution
set. However, as the number of objectives, and consequently,
the number of alternative solutions increases, visualizing the
solution set becomes extremely difficult.



For problems with many objectives, the common visual-
izations employed include parallel coordinate plots (PCPs),
pair-wise scatter plots, heat maps, and radar charts [Dy et
al., 2022]. The PCP gives a comprehensive overview of all
the solutions, and the other plots assist in further analyzing
specific solutions, objectives, or their combinations. For in-
stance, Figure 2 shows example plots for a simplified (four
objectives) version of the reservoir management problem in
Example 1. As shown, the PCP looks quite cluttered with
a large number of solutions. Specific solutions, e.g., best
solutions for each objective, can be highlighted in the PCP.
However, the extreme solutions may not be the most suitable
solutions. The number of plots in the pairwise scatter plots in-
creases combinatorially with the number of objectives. Then,
tracking how specific subset of solutions fare across different
pairs of objectives becomes quite challenging.

Several software tools have been developed, across appli-
cation domains, for visualizing the solutions, e.g., PAVED
[Cibulski et al., 2020] (a web app), Parasol [Raseman
et al., 2019] (a Javascript library), and EMA Workbench
[Kwakkel, 2017] (a Python library). Despite overlapping fea-
tures, most of the existing visualization tools are developed
independently—they don’t build on a common core and only
offer static visualizations [Raseman et al., 2019].

Since visualizing a many-dimensional solution set is chal-
lenging, the dimensions of the solutions can be reduced (typ-
ically, to 2D or 3D). For instance, Nagar et al. [2021] pro-
pose to use interpretable self-organizing maps (iSOM), which
works similar to a conventional SOMs in mapping a high-
dimensional space to a low-dimensional space but differ in
the way the best matching unit is chosen in order to reduce
folds and intersections in the low-dimensional space. Elewah
et al. [2021] propose 3D radial coordinate visualization (3D-
RadViz), which maps a many dimensional objective space
into 3D, preserving some properties of the solution set. How-
ever, since mapping a solution set to a low-dimensional space
typically involves non-linear transformations, preserving the
exact geometry of the solution set is not possible.

In contrast to works that visualize the MOO output, Wal-
ter et al. [2022] propose Population Dynamics Plot (PopDP)
to visualize the MOO process (specifically, for evolutionary
MOO). PopDP shows not only the solutions in the objective
space, but also the parent-offspring relationships and the per-
turbation operators that yield the solutions to show how the
MOO solutions evolve through iterations.

3.2 Mining the Solution Set
Visualizing a multi-dimensional solution set, in its entirety,
is cognitively difficult. Although a visualization can present
complex information, as Dy et al. [2022] find there is a ‘ceil-
ing’ on the number of dimensions a DM can consider simul-
taneously. Thus, data mining methods—both supervised and
unsupervised—have been developed to extract targeted infor-
mation from a solution set to augment the high-level insights
from visualizations. To apply these methods, we need to build
an MOO dataset consisting of input and/or output features
from an MOO solution set.

In supervised methods, the input features are typically de-
rived from the decision variables and the output feature from,

(a) A parallel coordinates plot, representing N -dimensional data by
N equally spaced, parallel, axes. The polylines represent solutions
and they bisect each axes based on their values for objectives.

(b) Pair-wise scatter plots, comparing solutions for each pair of ob-
jectives and indicating the general trend with regression lines.

Figure 2: Sample visualizations of the Pareto-optimal solutions to a
simplified version of reservoir management problem (Example 1).

e.g., (1) ranks obtained by non-dominated sorting solutions;
(2) one of the objective functions; (3) preference information
elicited from the decision-maker; or (4) clustering methods
[Bandaru et al., 2017]. Since the goal of such methods is
to extract knowledge in a human-perceivable way, black-box
models such as neural networks are typically not used. In
contrast, methods such decision trees and logistic regression,
which are easier to interpret, are used. For instance, Dudas et
al. [2015] use decision trees for the post-analysis of MOO so-
lutions by utilizing the whole set of feasible solutions to find
rules separating preferred from undesirable solutions.

Unsupervised methods do not require ‘labeling’ a feature
of an MOO dataset as the output feature. For instance, a va-



riety of methods have been applied to cluster the solution set
in the objective space [Bandaru et al., 2017]. Ulrich [2013]
describes a method to find clusters that are compact and
well-separated in both objective and decision spaces (multi-
dimensional spaces defined by the objective functions and de-
cision variables). Since good clusters in decision space may
not correspond to good clusters in the objective space, Ul-
rich models clustering as a biobjective optimization problem.
Sato et al. [2019] apply clustering and association rule min-
ing (another unsupervised method) in sequence, where clus-
tering groups solutions and association rules within a clus-
ter provide finer insights. Bandaru [2013] develops an au-
tomated innovization (innovation through optimization) ap-
proach, which discovers design principles that relate vari-
ous problem elements (e.g., decision variables, objectives,
and constraint functions) in an automated manner, employ-
ing grid-based clustering and genetic programming.

3.3 Uncertainty Exploration
As mentioned in Section 2.3, we focus on the exploration
of stochastic and deep uncertainty within MOO, which can
be done within the optimization or at a post-processing
stage. Uncertainty exploration within optimization involves
exploration of solutions under a large ensemble of scenar-
ios yielding optimization results that may perform well un-
der a broader set of challenging scenarios. This style of ex-
ploration is referred to as multi-objective robust optimiza-
tion [Shavazipour et al., 2021a]. In contrast, in the post-
optimization exploration, the goal is to find the combina-
tion of uncertain parameters and their ranges that can im-
pact the outcomes of interest. For instance, the combina-
tions and/or ranges of uncertain parameters that fail or suc-
ceed to meet given performance thresholds across objectives
can be quantified. This style of exploration is particularly rel-
evant for long-term planning. Figure 3 showcases different
approaches for uncertainty exploration within MOO (adapted
from [Zatarain Salazar et al., 2022]).

With the vast climatic, technological, economic and socio-
political changes it is no longer possible to determine how the
future conditions might change, especially when considering
long-term planning horizons (e.g., on the order of 70–100
years). Nonetheless, decisions are still made under these con-
ditions, with the additional difficulty that different stakehold-
ers cannot agree upon, or do not have enough knowledge
about how important are the various outcomes of interest;
what are the relevant exogenous inputs to the system, and
how they will change in the future [Kwakkel et al., 2010].
A number of techniques have been developed to cope with
the challenges of decision-making under uncertainty, partic-
ularly when the decisions taken today will have large im-
pacts for years to come over a large population. An exam-
ple of such decisions are sustainable development policies.
The fundamental question is, how can we take actions today
that align with long-term goals? Researchers in the field of
robust decision-making have dealt with this question by enu-
merating multiple states of the world without ranking their
likelihood [Kwakkel et al., 2016] States of the world is a cen-
tral concept in decision theory which refers to a feature of the
world that the DM has no control over and is the origin of the

DM’s uncertainty about the world. Each of the possibilities
of the future is called scenario and from the multi-objective
problem point of view, the goal is to test the set of optimal so-
lutions on robustness. This is usually done by checking how
sensitive they are to different states of the world [McPhail et
al., 2018].
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Figure 3: Uncertainty exploration within MOO. Panel A depicts no
uncertainty exploration. Panel B shows uncertainty exploration by
sampling the uncertain parameters and solving them multiple times
to obtain a range of outcomes. Panel C shows a range of possible
values of the uncertain parameters, which can be explored within
the optimization or after the outcomes are known, e.g., to find the
ranges in which the outcomes of interest succeed (or fail) to meet a
performance threshold.

Kwakkel et al. [2017] propose EMA Workbench, an open-
source Python library, to assist multi-objective decision mak-
ing under deep uncertainty. It supports visual analysis inte-
grated with robustness analysis [McPhail et al., 2020], which
consists of four components: (i) generation of policy options
(through MOO); (ii) generation of states of the world (sce-
narios against which candidate policy options are evaluated);
(iii) vulnerability analysis (which aims to identify the relative
influence of the various uncertain factors on policy robust-
ness); and (iv) robustness evaluation (through calculation of
different metrics of robustness from the literature such as sat-
isficing metrics, regret metrics, and descriptive statistics of
the distribution of outcomes over the states of the world).

Shavazipour et al. [2021a] propose two novel visualiza-
tions tools for scenario-based MOO, which support the DM
in exploring, evaluating, and comparing the performances of
different solutions according to all objectives in all plausible
scenarios. These visualization methods are (i) a novel ex-
tension of empirical attainment functions for scenarios (SB-
EAF); and (ii) an adapted version of heatmaps. With SB-
EAF, practical visualization is limited to bi-objective opti-
mization problems as it can become non-intuitive for a DM
to analyse a large number of solutions through SB-EAF.



4 Emerging Research Directions
We reviewed three established lines of research on decision
support for MOO in the previous section. As this topic is
gaining traction, there are several emerging lines of research
that we discuss in this section.

Interactive visualizations There is an increasing emphasis
on making MOO visualizations interactive. The interactivity
enables a DM to, e.g., select and focus on specific solutions
or subset of solutions, hide certain dimensions, or cluster so-
lutions. Recent MOO visualization libraries such as PAVED
[Cibulski et al., 2020] and Parasol [Raseman et al., 2019]
offer such interactive features. However, there are several av-
enues to improve the MOO visualizations.

First, although recent tools enable interactivity, they do not
guide the DM on what to visualize. For example, a DM can be
guided on interesting solutions or clusters. This can be facil-
itated by systematically integrating data mining (Section 3.2)
and visualization techniques (Section 3.1). Further, although
most visualizations (and DM’s preferences) are in the objec-
tive space, the knowledge required to implement the preferred
solutions is in the decision space. Thus, there is a need for
techniques that bridge the two spaces. To this end, in a recent
work, Smedberg and Bandaru [2023] develop an interactive
decision-support system that integrates knowledge discovery
and visualization techniques. However, the effectiveness of
this tool in real-world applications remains to be studied.

Second, a DM often needs to navigate multiple types of
visualizations to gain a good understanding of the solution
sets. Thus, it is important to facilitate the DM’s knowledge
discovery in an incremental manner. For instance, if the DM
focused on one cluster in a plot, it should be easy to explore
solutions from that cluster in another plot. Such continuity is
largely missing in the current tools. Further, there is also a
need to recognize the decision-making ‘styles’ of individual
DMs and personalize decision support tools, accordingly.

Finally, most of the existing MOO visualizations are meant
to be used by experts (e.g., researchers and engineers). How-
ever, the DMs, e.g., a city council, may not have the MOO
expertise. How to support such DMs remains a largely open
question. To this end, methodologies such as data storytelling
[Ojo and Heravi, 2018] can be beneficial, but they need to be
adapted for MOO outputs and workflows.

State-of-the-art ML methods First, the existing machine
learning (ML) methods for mining the solution sets are typ-
ically fully supervised or unsupervised. However, there are
intermediate paradigms such as active and semi-supervised
learning. Along this direction, Zintgraf et al. [2018] de-
velop a method to uncover implicit user preferences via Gaus-
sian processes and active learning. Similar methods can be
adopted for other tasks related to MOO knowledge discov-
ery. Second, existing classification models that treat the (dis-
cretized) objective value as the class variable, consider one
objective at a time or an aggregation of objective values. An
unexplored direction is to consider multiple objectives at the
same time via multi-label classification models, which learn
from label correlations. Finally, simple data mining methods
such as decision trees are preferred over black-box models
such as neural networks in the knowledge discovery phase

since the goal is to generate knowledge for humans (DMs).
However, there have been significant advances in making
neural networks explainable. Such techniques are yet to be
explored for analyzing an MOO dataset (Section 3.2).

Explainable MOO Explainability is an important topic
across AI subfields. MOO methods, which produce a solu-
tion set, can possibly offer more information to the user com-
pared to other AI methods, which produce a single solution.
However, turning the trade-offs implicit in an MOO solution
set into explicit explanations is largely an open challenge. It
leads to important questions such as: What kinds of explana-
tions can MOO produce? How informative are they? How
easy are they for DMs to understand? How do they influence
the decision-making process (positively or negatively)? First,
there is a need to come up with such questions systematically.
In this direction, one can build on the recent explainable AI
question bank [Liao et al., 2020] and adapt it for MOO.

There are some recent works on explainable MOO meth-
ods. Misitano et al. [2022] propose an explainability frame-
work for interactive MOO (specifically for algorithms em-
ploying scalarization). This framework utilizes SHAP, a pop-
ular explainable AI method, and produces rules explaining
the trade-offs during the optimization process. Corrente et al.
[2021] propose a similar approach for multi-objective evolu-
tionary algorithms. However, research in this direction is still
at its infancy. There are several open questions about, e.g.,
explaining the search process, identifying the objectives or
decision variables that influence the algorithm the most, and
identifying potential biases in the solution set.

Dynamic uncertainty and expert elicitation The chal-
lenge of coping with epistemic uncertainty in multi-objective
decision support has been largely addressed by the field of de-
cision making under deep uncertainty. The methods to cope
with deep uncertainty described in Section 3.3 entail a com-
prehensive set of tools to analyze the possible outcomes and
options to reduce decision risk. Nonetheless, the majority of
these approaches focus on the robustness of solutions and less
so on their adaptability and flexibility. Much of the uncer-
tainty consideration in MOO is static—it is integrated at spe-
cific stages of the analysis with little room to adapt the search
process when new information is available. The interplay be-
tween dynamic uncertainty, multi-objective optimization and
decision support is widely understudied.

A key research direction is to enable feedback mechanisms
between uncertainty exploration and the search space to inte-
grate new knowledge. Such a mechanism can directly con-
tribute to real-time robust decision support. Further, there is
a lack of consensus about the importance of deeply uncertain
parameters and their lower and upper bounds. To address this
challenge, future research can focus on developing techniques
to systematically integrate expert knowledge and reach a con-
sensus on deeply uncertain parameters. This represents a key
step towards the acceptability of solutions by grounding the
uncertainty exploration on recognized expert criteria.

Time sensitivity There has been little work focusing on the
analysis of the behaviour of the solutions and their trade-offs
over time, with only Quinn et al. [2019] proposing a time-
varying sensitivity analysis to evaluate how the sets of water



release policies adapt and coordinate information use across
the reservoirs differently. They utilise variance decomposi-
tion (local, derivative-based sensitivity analysis) of the pre-
scribed release policies to analyse how they use state infor-
mation in different ways over the course of 1000 years of
simulation period. The decomposition is done for each day,
for each reservoir (four reservoirs included in the case study)
to determine which information source influences the release
decision the most, for each reservoir during different times
of the year, and across the years. Although the behaviour of
the solutions over time is an important angle of the multi-
objective analysis for sequential decision-making problems,
it is still an understudied field of MOO.

Alternative ethical framings The fair distribution of bene-
fits and risks among stakeholders is a major concern in de-
cision support. MOO has partially overcome unequal dis-
tributional outcomes due to its ability to avoid aggregation
over objectives into, e.g., a single economic metric. There
remains, however, the opportunity to explicitly include alter-
native justice representations within MOO. Pareto optimality,
while argued by some to be a necessary condition for jus-
tice, has been criticized for being too ideal and not ensuring
fairness or stability, i.e., the focus is placed on seeking ideal
solutions instead of acceptability and achievability.

A relevant direction in current MOO research is under-
standing how different ethical principles and values can be
integrated into multi-objective decision support systems, and
how they can affect the distribution of outcomes. Ethical con-
siderations within MOO have so far been addressed by set-
ting performance thresholds on the solution sets, or by inte-
grating additional fairness goals in the problem formulation.
However, the question of how to restructure the design of
MOO algorithms using alternative ethical theories to guide
the search is yet to be explored. This question can be ap-
proached by linking MOO design with two major branches
of ethical theory—consequentialist and deontological. The
first represents the status-quo and focuses on the outcomes of
the solution, and the second, focuses on their adherence to a
given moral rule regardless of their outcomes. Further, to un-
derstand how consensus between DMs is affected by different
justice principles, decision support should provide the ability
to choose between ethical theories. This will broaden our un-
derstanding of how to integrate ethical concerns in decision
support systems, and provide practical insights for the design
and deployment of MOO systems.

Understanding the DM’s needs Despite a growing body
of work on decision support for multi-objective decision-
making, there is a dearth of systematic studies on who the
DMs are, what kind of support they need, and at what stage
of the decision-making process. Much of the current work re-
lies on the researchers’ assumptions or, at best, anecdotal evi-
dence on what the DMs need. Thus, an important research di-
rection is to systematically understand the DMs requirements.
Along this direction, for instance, Dy et al. [2022] conduct an
empirical study to compare the four popular visualizations
(Section 3.1). In particular, they analyze how the chart com-
plexity, the data volume (number of options and dimensions
shown), and the DMs’ prior experience affects the time and

accuracy of decision-making. Such empirical studies are nec-
essary, not only for visualization, but also for each aspect of
decision support such as knowledge discovery methods, ex-
plainability, and uncertainty handling.
A reference architecture for tool development There ex-
ist several software tools—web applications, libraries, and
frameworks—for decision support on MOO (we refer to only
a few of these tools in this paper). Many of these tools are
open source. Further, there is a substantial overlap in fea-
tures among these tools. Thus, a valuable direction (e.g., for
another survey) is to systematically catalog these tools and
their functionalities. The dimensions of decision support we
identify (in Sections 3 and 4) can provide an initial structure
for such a catalog. Further, at a technical level, this initial
structure can be refined into a reference architecture for MOO
decision-support systems. Such an architecture (with an as-
sociated inventory of tools for each component of the archi-
tecture) can both reduce the entry barrier for practice and in-
crease the pace of innovation on MOO decision support.

5 Conclusions
There is growing recognition that AI systems are intended to
augment (not replace) human intelligence. The MOO meth-
ods fit in this line of thought very well as they offer trade-offs
DMs can explore in order to come up with final solutions as
opposed to simply adopting the solutions AI suggests. Such
a human-aligned decision-making process is particularly im-
portant for addressing safety and other ethical concerns of us-
ing AI, as well as legal requirements [Vamplew et al., 2018].

Although MOO is a well-established topic, extant research
on this topic is largely focused on the algorithmic aspects
of optimization. However, the human-centeredness of the
multi-objective decision-making process is increasingly rec-
ognized. Accordingly, there is a growing body of work on
engaging humans in the complex decision-making process.
This body of work is spread across research fields, including
AI, Operations Research, and application areas like Environ-
mental Sciences. Our work brings these works together under
the umbrella of decision support methods for MOO.

We identify three categories of decision-support
methods—visualization, knowledge discovery, and un-
certainty exploration—that have been well-studied in the
literature. We do not provide an exhaustive list of works
in these categories, but provide a comprehensive overview.
Importantly, we identify, a number of emerging research
lines on this topic, including, interactive visualization,
explainability, and support on ethical aspects. We provide
concrete research directions along these lines. Finally,
we also identify the needs for qualitative research on this
topic, specifically to identify the needs of DMs, and call for
collaborative effort to bring together practical tools.

Acknowledgements
This research was supported by funding from the TU Delft
AI Initiative and the Flemish Government under the “Onder-
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Eugenio Bargiacchi, Johan Källström, Matthew Macfar-
lane, Mathieu Reymond, Timothy Verstraeten, Luisa M.

Zintgraf, Richard Dazeley, Fredrik Heintz, Enda How-
ley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé,
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