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Abstract

The goal in behavior cloning is to extract meaningful information from expert
demonstrations and reproduce the same behavior autonomously. However, the
available data is unlikely to exhaustively cover the potential problem space. As a
result, the quality of automated decision making is compromised without elegant
ways to handle the encountering of out-of-distribution states that might occur due
to unforeseen events in the environment. Our novel approach RECO uses only the
offline data available to recover a behavioral cloning agent from unknown states.
Given expert trajectories, RECO learns both an imitation policy and recovery
policy. Our contribution is a method for learning this recovery policy that steers
the agent back to the trajectories in the data set from unknown states. While
there is, per definition, no data available to learn the recovery policy, we exploit
abstractions to generalize beyond the available data thus overcoming this problem.
In a tabular domain, we show how our method results in drastically fewer calls to a
human supervisor without compromising solution quality and with few trajectories
provided by an expert. We further introduce a continuous adaptation of RECO and
evaluate its potential in an experiment.

1 Introduction

In seeking to automate increasingly complex processes, algorithms that learn from data are an
attractive approach to autonomous decision making. Realistically, learning methods often fall short
of meeting the requirements of real-world problems. In several domains, particularly safety-critical
applications, but also any where decisions require explicit justification, it is not practical to take
random actions. This ability to explore is, however, where many online learning algorithms get
their power. One way to assuage the limitations of such algorithms is to incorporate demonstrations
by an expert. Agents are then trained to copy and deploy the exemplar behavior online with as
little supervision required as possible. Particularly in the field of behavioral cloning [2], the agent
is expected to directly replicate the demonstrated behavior rather than make insights about the
underlying reasoning. We focus on this case, where an expert has provided examples of correct
behavior that we seek to automate in the real environment without any exploration or further learning.
While the given trajectories are considered optimal, in large state spaces with several state variables
it is infeasible for a human to define the correct behavior for every state. Presented with a state far
from its expert data set, an agent can either follow its potentially very incorrect model or take random
actions, both of which are undesirable in safety-critical applications. An option is to facilitate human
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intervention whenever the agent is lost, but this severely limits the quality of automating the system.
In a typical behavior cloning scenario, a supervised learning approach can be used to predict the
expert actions in given states [15]. As with any supervised learning method, the ability to generalize
over states never seen before is not guaranteed. Further, any model error accumulates over every
planning step. These issues severely limit the applicability of behavior cloning in more than the
simplest environments. Our method produces a more robust behavior clone that can recover from
parts of the state space not covered by its imitation policy. We do this by applying state abstraction to
offline data in order to plan a way back to a given behavior policy when in an unknown state.

Consider being in a situation where you are looking for a particular shop that you’ve been to before
but, due to unexpected road work, you’ve taken a detour from the known route. A reasonable solution
would be to first find your way back to a place you know, and then follow your memory to the shop
from there. When lost, you substituted the goal of locating the shop with getting back to a familiar
path. This key principle can be applied to a planning agent that encounters a state far from the expert
trajectories it was given. This is done in our method by applying state abstraction to the given offline
data. We compute a coarse model of the problem of planning a path back to a state where the agent
can confidently follow its behavior cloning policy. Instead of trying to generalize over the entire
decision making task, our agent focuses on the simpler problem of using what it knows to get back
on track, thus minimizing the model error. The result is a reduction in calls for human supervision
and robustness to unexpected changes that might occur in the environment. The key point here is that,
even with a biased data set (containing only successful trajectories) and without making potentially
dangerous conclusions about never-before seen states, we are able to recover a lost agent back to a
known policy.

This paper introduces RECO, an abstraction-guided policy recovery approach to behavior cloning.
We first discuss related methods in the literature. Then, we formally define the policy recovery
problem and show how we use data from expert trajectories to specify and solve it. We assess the
performance of our method against several baselines in tabular and continuous problems and conclude
with suggestions for expanding this work.

2 Related Work

All offline (or batch) learning techniques must deal with the issue of what to do when the agent
encounters an out-of-distribution state during execution. This issue of distributional shift is a well-
studied problem in the literature [6, 9, 10]. In behavior cloning or imitation learning, the offline data
is produced by an expert and contains only good examples of actions taken in the environment. In
our method, we focus on agents that, once deployed, cannot execute random (explorative) actions in
the environment nor learn from their online interactions. This distinguishes our problem set up from
inverse reinforcement learning, though the rewards are also unknown, as the aim there is to learn a
reward structure that produces the observed behavior.

Several authors have explicitly approached the subject of recovering an agent from an out-of-
distribution or anomalous state. The question of what to do when in such a situation has had
a wide-range of proposed answers, from reverting to a safe policy [14], forcefully resetting the
agent [1], or requesting human intervention [11, 7]. In our problem set-up, we assume that a safe
policy is not known outside of the expert trajectories provided, that resetting the agent is not possible
and that human supervision in the true environment is very costly and therefore undesirable. Though
not an imitation learning approach, the work of [5] involves the agent simultaneously learning to
perform the task and learning to undo the actions it has done. It this way it learns policies that avoid
irreversible states and aims to minimize the need for human intervention.

Others have considered methods that steer the agent towards the expert behavior [8, 16]. In soft Q
imitation learning, they incentivize a learning agent to take actions that lead back to states known in
the expert demonstrations [13]. Similarly to our method, they define a sparse reward function that
provides reward for taking demonstrated actions from demonstrated states, training the agent to favor
behavior close to the expert. However, they do not isolate the planning problem of returning the agent
to known states. In addition to doing this, our application of abstraction to learn this coarse problem
representation is a novel contribution to existing work.
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3 Background

This section briefly introduces preliminary material that serves as a foundation for our method.

3.1 Markov Decision Processes

A Markov decision process (MDP) [12] is a tupleM = (S,A, T ,R, γ) that describes a sequential
decision making problem. The variables S and A denote the state and action space, T andR the
transition and reward functions, and γ is a discounting factor. At each time step t, an agent observes
the state of the environment st ∈ S and chooses an action at ∈ A. Upon executing action at, the
environment transitions to a new state st+1 ∼ ( · |st, at), sampled according to a transition function
T : S × A → S which maps (s, a) pairs to a distribution over next states. The agent receives a
reward rt according to the reward function R : S × A → R. The value of a state V (s) is the total
discounted reward of the state, given by

V (s) =

∞∑
t=0

γtrt

The solution to an MDP is a policy π that maps states to actions. The value of a policy π is the sum
of expected discounted rewards over all states. An optimal policy π∗ is one that maximizes this value.
An MDP can be solved using Value Iteration or Policy Iteration; these are standard approaches that,
for reasonably sized problems, produce an optimal policy π∗.

Reinforcement learning concerns solving techniques for MDPs with unknown transition and reward
functions. This typically involves executing actions in the environment and learning to both explore
randomly and exploit the knowledge already learned regarding rewarding actions. For the uninitiated
and interested reader, we refer to [17].

4 RECO: Abstraction-Guided Policy Recovery

Our overall aim is to automate the process of making decisions in an environment given examples of
good behaviour provided by an expert. These trajectories of decisions consist of environment obser-
vations and corresponding expert actions, but do not cover the entire space of possible observations
and actions. Our behavior cloning agent must use this data in order to compute a policy that is then
deployed online without any additional data collection or computation. We make no conclusions
about the abilities of our behaviour cloning agent in states outside the data set. Thus, we assume that
a human supervisor is available to provide an action when the agent finds itself in a state sufficiently
far from those included in the expert trajectories. The goal of our method is to reduce the number of
calls to the human supervisor using only the data provided by the expert without a substantial loss in
performance.

4.1 Problem Formalization

The problem considers making decisions in a system represented as Markov decision process, where
the state and action space are known but the transition and reward function are unknown. We
assume a factored state space is available, thus the space spanned by the domains of k state variables
S = {S0 × ...× Sk}. Our data set of several trajectories provided by an expert is called D, and is
collected according to an unknown policy; we want to copy the behavior of the expert given only
these examples. The data set is of the formD = (s1, a1, s2, a2, ..., sT , aT ) containing a finite number
T of (state, action) pairs. The set of states found in D is called the state space SD, where SD ⊂ S.
The imitation policy πD(s) is defined for all s ∈ SD. Our method RECO learns both an imitation
policy and a recovery policy from expert trajectories. This latter policy guides the agent back to states
covered by its imitation policy from states never visited in the expert demonstrations. The recovery
policy uses abstraction to focus on the parts of the state space that are relevant for recovery, thus
being able to generalize over unseen states.

We explain this further with an example (pictured in Figure 1). In the classical taxi problem [3], a
taxi agent (T) in a grid world must pick up a passenger from a given location (P) and drop them off
at their given destination (D). The variables in the factored state description indicate the x and y
coordinates of the taxi and locations of the passenger and destination, i.e. s0 = (x0, y0, p0, d0). The
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Figure 1: Example of expert trajectories for the classical taxi problem. T indicates the taxi position, P
the passenger location and D the destination of the passenger.

arrows in Figure 1 indicate expert behavior for the locations of the taxi, passenger and destination
shown. Suppose our agent finds itself at location o, pictured in red, with the passenger and destination
located in the black. For this particular state of the passenger and destination, the expert has not
provided an example, only the path given by the black arrows. However, another trajectory (blue
arrows) for a different configuration of passenger and destination does contain this taxi location. By
ignoring irrelevant information, our agent can reason about actions that return it to a known state. A
RECO agent will leverage the actions in the blue path, taking them from its position at o and getting
back to the known policy (black path) which it then executes. It does this by applying what it knows
in the abstract state space (x and y position) to get back to a known state.

4.2 Tabular RECO

In tabular domains, we define our imitation policy πD as simply sampling an action according to a
weighted distribution, weighted by the number of times an action was executed by the expert from
state s. The main contribution of our method is the definition and use of a recovery policy. We model
the recovery problem of getting back to a state in the data set from a state outside of SD as an MDP
MO, where:

MO = (SO,AO, TO,RO, γO)

We build the recovery MDP using transitions that occurred in the expert data set, projecting this data
onto only the relevant parts of the state space S. We assume there exists an abstraction mapping
function µ which, given the state s, returns only the state variables relevant to the orientation task,
µ(s) = s̄. The inverse function µ′(s̄) returns the set of ground states that map to the abstract state s̄
under the mapping function µ. We keep the same action space as in the original MDP. By applying
the function µ to our data set, we get an abstracted data set D̄ = (s̄1, a1, s̄2, a2, ..., s̄T , aT ). We call
SD̄ the set of ground states that map to the abstract states in D̄, retrieved by applying µ′ to the states
in the expert trajectory. Both D and D̄ are used to build the MDPMO. This MDP is defined over the
entire state space S augmented with an additional sink state z. Transitions that are not represented
in the expert-provided data set transition to the sink state. In the sink state, all actions transitions
back to the sink state with 0 reward. The reward for taking action a from state s is 1 if s is present in
SD̄, 0 if the abstract state pair (s̄, a) is present in D̄, and otherwise -1. Thus, for all transitions for
which the abstract state has never been visited, there is a negative reward. The transition function
contains the transitions observed in the data set D. Below, we define this formally for deterministic
transitions. In the case of stochastic transitions, the transition function can be defined by first looking
at the frequency of visits to each s′ given (s, a), and taking the softmax to produce probabilities that
sum to 1.

Our MDPMO is then fully specified as:

SO = S ∪ {z}
AO = A

RO(s, a) =


1, if s ∈ SD,
0, else if (s̄, a) ∈ SD̄ ∨ s = z,

−1, otherwise.
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TO(s, a, s′) =


1, if (s̄, a, s̄′) ∈ SD̄,
1, if (s̄, a) /∈ SD̄ ∧ s′ = z,

1, if s = s′ = z,

0, otherwise.

γ = [0, 1)

The recovery MDP can be solved using an off-the-shelf method such as Value Iteration, producing
the recovery policy πO. We assume our agent has access to an emergency action request that requests
an action from an expert. A tabular RECO agent then follows the aggregated policy:

πRECO(s,D, µ) =


πD(s), if s ∈ SD,
πO(s), else if s̄ ∈ SD̄,
request, otherwise.

4.3 Continuous RECO

There are several adaptations to be made in order to apply our method to a continuous problem. We
first consider the imitation policy. A supervised learning approach can be used to learn this imitation
policy, predicting the expert’s actions from a given state, trained on the data in D. Again, we call this
policy πD. As in the tabular version, we assume the existence of an abstraction function µ(s) that,
when applied to the states in our data set, gives us the abstract data set D̄. We gauge whether a state
falls within the space defined by our expert trajectory according to a distance measure d(sa, sb). Many
distance measures are possible, but in this work we use a weighted L2 norm calculation between the
states sa and sb, summed and weighted over each state dimension.

The transition and reward functions of our continuous recovery problem can no longer be represented
in tabular form. We want the transition function to capture the transition in the abstract space. Thus,
we train a supervised learning model on D̄ to predict abstract next states from abstract states and
actions. We call this predictor φT , where φT (s̄, a) = s̄′. Our transition function TO takes a full state
s and transitions only the abstract variables according to φT , leaving the other variables unchanged.
Thus,

TO(φT , s, a) = s′.
The reward function takes a state and the expert trajectories, and returns a value of 0 or 1 determined
by the distance measure and threshold ζD. The reward function is defined:

RO(s,D) =


1, if ∃s∗ ∈ SD : d(s, s∗) < ζD,

−1, if s /∈ S,
0, otherwise.

This gives a reward of 1 for entering a state only if the distance between it and the closest state in the
expert trajectories is lower than the threshold. A negative reward is given if the agent transitions to
an out-of-bounds state. With the transition and reward function defined, we can now simulate the
recovery environment. We initialize a random state by sampling a state from the expert trajectories
and replacing the irrelevant variables (those ignored by abstraction mapping µ) with a uniformly
random value within their bounds. Given an action, the environment transitions according to the
transition function, receiving a next state and reward from the reward function. An episode ends if:
a maximum number of steps is reached, the environment transitions to an out-of-bounds state, or
if the reward function returns a reward of 1. We can solve the recovery problem using a standard
continuous state-space reinforcement learning method, obtaining πO. For the experiments presented
in section 5.2, we used a Proximal Policy Optimization variant.

The threshold for distance between the abstract state s̄ and the abstracted data set is another parameter
ζA, different from that regarding the ground data set. A continuous RECO agent acts according to the
following policy:

πRECO(s, µ,D, ζD, ζA) =


πD(s), if ∃s∗ ∈ SD : d(s, s∗) < ζD,

πO(s), if ∃s∗ ∈ SD̄ : d(s̄, s∗) < ζA,

request, otherwise.
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Figure 2: Recovery potential: Expert actions in the {row, column} (left) and {row} (right) abstrac-
tions (for all possible locations of passenger and destination). The actions are filtered to include only
those that result in a change in abstract state.

4.4 Choosing Abstractions

Given a data set D = (st, at, st+1, at+1, ..., st+T , at+T ), where the state space S is factored into k
components, the aim is to define a mapping function µ(s) that maps a state s to an abstract state s̄
made of a subset of its k variables. A natural question arises of how to choose or learn this subset.
There might be several abstraction mappings that have the potential to facilitate recovery and we rely
here on expert knowledge to choose a suitable subset. There are some general guidelines to consider
when doing so. For example, in the taxi domain described above, the destination location is not
affected by the actions of the agent; such variables cannot be included in the abstracted subset as the
agent has no control over recovering them. If a very small number of expert traces are available, the
designer should favour a small abstraction (smaller state space, higher compression) which requires
fewer samples to facilitate recovery but in turn has a limited potential to recover. A larger abstraction
requires more expert data but also means the recovery agent can recover more states. Figure 2
demonstrates this, showing how an abstraction of {row, col} can (with enough data) traverse the
whole map to recover a state whereas using just {row} limits the agent to recovery of states within
the same column.

5 Empirical Evaluation

We conducted experiments on a 10x10 extension [4] of the classical taxi problem [3] and a continuous
problem where the agent is tasked with picking up an object from a given location in the map. In
each trial, all learning was done offline on the same set of given expert trajectories (a trajectory is 1
episode). They were then deployed and evaluated on their performance online in the test environment,
initialized to the same random state in each episode.

5.1 Tabular Experiments

The large taxi problem consists of a 10x10 grid and has 8 possible passenger locations (plus 1 for when
the passenger is in the taxi) and 4 destination locations (3600 total states). It serves as an example of
a factored problem where the agent must pick up and drop off objects according to positions indicated
in the state description. Generalizing a policy across unseen states is made more difficult by walls
in the environment. Expert trajectories were generated by initializing the agent in a random state
and following a trained Q-learning agent greedy policy until episode termination. We compared
our RECO agent test performance on 100 episodes against three baselines. The Imitation baseline
follows the imitation policy and calls for help in any states outside the expert trajectories given. The
Nearest Neighbor baseline uses a crude nearest neighbor approach to choose actions in undefined
states, sampling an action from its Cartesian neighbors in the expert trajectories, considering only the
relevant subset of state variables. In this way, it uses the same information regarding abstraction as
provided to RECO. The Factored Batch RL approach is an offline reinforcement learning method. It
uses complete knowledge of the transition dynamics in the form of a dynamic Bayesian network and
calculates the parameters of the model with the offline data. This acts as an upper bound of offline
learning performance in a factored MDP.

Figure 3 displays the results from the tabular experiment. We ran 25 trials (25 different sets of traces
provided by the expert), testing the agent on 100 episodes initialized in a random state. Even with a
small number of expert trajectories given, RECO requests help from a human supervisor in less than
10% of episodes, while the Imitation agent calls for help in over 60% of test episodes. As expected,
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Figure 3: Performance on 100 test episodes of the 10x10 taxi problem averaged over 25 trials of
random initial states. 98% confidence interval indicated by shaded regions.

the upper baseline Factored RL, which uses extensive knowledge of the task, has better performance.
In the tabular case the impact of RECO is very clear, as without function approximation an agent
is stuck when faced with a state outside its expert demonstrations. Our experiments show that the
potential for an agent to get lost can be very high without an exhaustive number of traces provided by
the expert. Instead, with about 200 traces, RECO performs relatively well and rarely requires the
human expert. In many real-life applications, a small performance loss would be acceptable given the
substantial savings in required human supervision.

5.2 Continuous Experiment

The continuous world is a simple problem meant to illustrate the potentially poor results when
following a naïve imitation policy. An agent is tasked with picking up an object from one of 4
possible locations, again in an environment that includes walls. If the agent performs a pickup action
at the correct location, it receives a +100 reward and the episode ends. The agent gets a -1 reward
every time step to encourage it to solve the task in as few time steps as possible and incurs a penalty
of -25 for illegal pickup actions. The agent gets a large penalty for hitting a wall and a very large
penalty (-1000) if the episode ends because a maximum number of time steps was reached. The state
description is (agent x coordinate, agent y coordinate, agent x displacement, agent y displacement,
goal x coordinate, goal y coordinate). The actions available are (propel north, propel south, propel
west, propel east, pickup). A propel action results in a discrete magnitude of acceleration added in the
corresponding direction, with acceleration decaying each time step. The “expert" is a reinforcement
learning agent trained by a variant of Proximal Policy Optimization on 1e6 time steps of this task. We
compare the performance of RECO against two baselines. The Imitation agent follows the imitation
policy if it is close enough to expert trajectories, otherwise it calls for help. The Imitation (no expert)
follows the imitation policy for any state it encounters regardless of its distance from the expert data
set.
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Figure 4: Performance on 100 test episodes of the continuous problem averaged over 30 trials of
randomly initialized episodes. 98% confidence interval indicated by shaded regions.

With very little data in this simple problem, the naïve imitation policy fails to grasp the correct
behavior of the expert, demonstrating the need for a human supervisor. However, at this point RECO
also relies highly on the supervisor. When the Imitation (no expert) agent has enough data to perform
adequately, RECO provides little advantage. We do see a reduction in the percent of episodes resulting
in a call to the expert, showing that with a better continuous recovery policy there is potential for
such a method to leverage information in its data set.

6 Conclusion and Future Work

Our work introduces the notion of applying state abstraction to expert trajectories in order to learn a
recovery policy which guides a lost agent back to known states. The aim is to make naïve behavior
cloning algorithms more suitable in environments where they would otherwise fail with too little data
provided by the expert. We show in experiments that RECO can drastically improve the performance
of a behavior cloning agent in tabular domains, requiring few calls to a human supervisor with a
relatively small number of expert trajectories given. In continuous domains, we see potential for the
RECO agent to make use of abstraction in the data set, however the recovery policy fails to make
gains over the baseline. Future work will focus on improving the continuous implementation to better
match the performance we see in tabular domains. We would also like to further explore in which
particular continuous problems RECO can provide a significant benefit.
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