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A survey on scenario theory, complexity and
compression-based learning and generalization

Roberto Rocchetta, Alexander Mey, and Frans A. Oliehoek

Abstract—This work investigates formal generalization error
bounds that apply to support vector machines in realizable
and agnostic learning problems. We focus on recently observed
parallels between results found in the statistical learning litera-
ture, like compression and complexity-based bounds, and novel
error guarantees derived within scenario theory. Scenario theory
provides non-asymptotic and distributional-free error bounds for
models trained by solving data-driven decision-making problems.
Relevant theorems and assumptions are reviewed and discussed.
We propose a numerical comparison of the tightness and effec-
tiveness of theoretical error bounds for support vector classifiers
trained on several randomized experiments from thirteen real-
life problems. This analysis allows for a fair comparison of
different approaches from both conceptual and experimental
standpoints. Based on the numerical results, we argue that the
error guarantees derived from scenario theory are often tighter.
This work promotes scenario theory as an alternative tool for
model selection and generalization error analysis of support
vector machines. In this way, we hope to bring the communities
of scenario and statistical learning theory closer so that they can
benefit from each other’s insights.

Index Terms—Generalization theory, scenario optimization,
PAC, compression, agnostic learning, support vector classifiers

NOMENCLATURE

Dm ⊆ ∆m data set of size m
δ = (x, y) ∈ Dm sample (features and a label) in Dm
f ∈ F function/model in a set of models
θ ∈ Θ parameter vector in a set of parameters
f?, θ? optimized model/parameters
A : Dm → F data-driven learning algorithm
C : ∆m → ∆dcp a data compression rule
y ∈ Y label sample in an output set
O(·),Θ(·),Ω(·) big-O notation [1]
dre smallest integer larger than r ∈ R
brc largest integer smaller than r ∈ R
R(θ) = R(f(θ)) true risk for model f(θ)
R̂(θ) = R̂(f(θ)) empirical risk for f(θ)
V (θ) = V (f(θ)) true margin violation probability for f(θ)
V̂ (θ) = V̂ (f(θ)) empirical violation probability for f(θ)
ε threshold risk/robustness level
ε, ε lower and upper error bounds
β confidence level
J(θ), l(θ) cost and loss functions
nθ number of model parameters
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nx number of input features
ζ slack variables
(w, b) separating hyperplane parameters
Z Hilbert space
ψ(x) kernel function
S? ⊆ Dm a support set of minimum cardinality
s?m = |S?| number of support constraints
d VC dimensions (model complexity)
dcp size of the compression
γCX tightness of complexity bounds
γSB tightness of scenario bounds
γCP tightness of compression bounds

I. INTRODUCTION

THe generalization error, also known as risk or out-of-
sample error, quantifies the ability of models to predict

previously unseen data and plays a fundamental role in model
selection for machine learning (ML) [2]. In practice, ML
models are often chosen by minimizing an empirical estimate
of their generalization error, for instance, applying k-fold
cross-validation [3], [4], bootstrapping [5], jackknife [6], and
leave-one-out methods [7]. These empirical approaches are
well-established among practitioners and applied in diverse
fields, including text classification [8] and categorization,
[9], clustering [10], language processing [11], object [12]
and fraud detection [13], unbalanced learning [14], pruning
[10] as well as in distributed, federated, multitask and active
learning [15]–[18]. However, empirical model selection
methods can be computationally expensive, especially for
complex models and large data sets, and the need to estimate
the generalization error inevitably reduces the data available
to train the models, which can be an issue under data scarcity.
If a severe lack of training examples affects the study, for
instance, when a data set is highly imbalanced or small,
cross-validation and bootstrapping methods may result in
unsatisfactory performance [19].

Unlike empirical model selection methods, formal
generalization error bounds are mathematically derived and
do not require test samples to estimate the generalization error.
Instead, the generalization error can be bounded without using
training data for empirical testing, speeding up the training
and model selection. Over the years, significant research has
focused on analyzing the theoretical properties of formal
generalization error bounds and, recently, [20] proposed a
data-free method for large-scale neural networks that only
uses spectral proprieties of the weights to analyze the model
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generalization. [21] introduced a Sharpness-Aware Learning
Rate Scheduler to improve generalization by dynamically
updating the learning rate of gradient-based optimizers,
and [22] studied stability and convergence properties of
generalization risk bounds for a particular kind of regularized
distributed learning algorithms.

In this context, the probably approximately correct (PAC)
learning framework [23] is one of the most widely applied to
study the generalization error within the statistical learning
literature, and prescribe formal generalization error bounds
for ML models. In the PAC learning framework, a learner
receives samples and must select a function (called the
hypothesis) from a certain class of possible functions with
good generalization properties. This framework has been
used to compute guarantees for many models, inducing
support vector models [24], graph kernels [25], majority
voting classifiers [26], multi-view learners [27], and on
domain adaptation and [28] multi-class domain adaptation
problems [29], as well as on general classes of Boolean
functions [30]. Several types of statistical learning bounds
exist, and they can be based on the Bayes theorem in the
PAC-Bayes framework [23], on an indicator of the model’s
complexity [31], or on the model’s ability to compress the
data [32]. Similarly to PAC-learning theory, scenario theory
studies formal generalization error bounds for data-driven
decision-making problems. Recently, error bounds introduced
by [33] have been applied to anomaly detection [34],
[35], interval regression [36], multi-agent learning [37], to
construct predictive belief functions from data [38], and
to study majority voting classifiers [39], and to robustly
design controllers and other systems [40]–[42]. Based on
the reviewed literature, only a few works used arguments
from scenario theory to obtain generalization bounds for ML
models like SVM, e.g., the works of S. Garatti and M. Campi
[33], [43] that recently introduced formal scenario bounds for
various models including SVM.

While attempts have been made to connect scenario theory
and statistical learning theory [43], the literature is missing a
clear comparison of the tightness of the bounds, especially
from a pragmatic and quantitative/numerical standpoint.
This work tries to fill this gap by proposing a numerical
comparison of formal generalization error bounds from
different theories. We focus on data-realizable and agnostic
learning problems1 and review and discuss underlying
assumptions and theorems. In Figure 1 we summarize the
main concepts we review in this paper. The comparison
of the tightness of the bounds is proposed on randomized
experiments from thirteen real-world data sets. For synthesis
and clarity’s sake, we focus our analysis on binary support
vector machine (SVM) classifiers, both for soft-margin
(agnostic) and hard-margin (data-realizable) cases. Note that,
while the numerical analysis in this work focuses on SVM
classifiers only, the reviewed theories apply to other ML

1See Section II-C for a definition of realizable and agnostic learning
problems.

models and to general classes of agnostic and realizable
learning problems. Hence, one of the main contributions of
this work is a fair comparison of different generalization
theories and a numerical evaluation of the tightness of formal
generalization error bounds.

The numerical results suggest that scenario bounds are often
tighter, particularly when the generalization error is small, and
better reflect the true risk for changing hyperparameters. With
this, we hope to bring scenario theory forward to the Artificial
intelligence (AI) community and connect it to known results
from statistical learning theories such as the one based on the
concepts of data compression and model complexity. Likewise,
we hope that we present work done in statistical learning
theory in an approachable manner for scientists working in
scenario theory, so that they may take some inspiration for
their work.

A. Related literature

This survey is motivated by recent theoretical results on the
error of support vector models [33] and an expression of the
research community on the need to investigate equivalences
between different generalization error theories [44]–[46].
Various researchers have investigated error bounds from
different theories to comprehend the relationship between
the complexity of learning models and formal generalization
guarantees achievable under different data availability
scenarios. In [44], [46], the authors demonstrated the
equivalence between PAC-learnability and compressibility,
whilst [47] established a new connection between PAC-
learning and stability theory. In [48], the authors focused
on various online learning settings while [45] investigated
an equivalence between PAC-learning and query-learning
bounds. Kostas Margellos et al. [49] made the first attempt
to connect compression learning with scenario theory and
focused on bounding the out-of-sample error probability
of realizable data-driven decision-making problems. Their
results show that the issue of providing guarantees on
the constraints violation probability reduces to a learning
problem for an appropriately chosen algorithm that enjoys
compression learning properties. Importantly, they show
that ideas from scenario theory can strengthen or relax the
consistency assumption to analyze learnability properties
[49]. Licio Romao and collaborators [50] combined results
from scenario theory and compression learning to derive tight
error bounds for the solutions of realizable convex algorithms
with discarded samples.

None of the reviewed works compared scenario bounds
for agnostic learning with complexity-based and compression-
based error bounds. Additionally, the literature lacks a nu-
merical comparison of the tightness of the formal error
bounds under different data availability conditions. There-
fore, further research is needed to link scenario, complexity,
and compression-learning theory for realizable and agnostic
learning settings, to identify the strengths and weaknesses
of different approaches, and to popularize theoretical error
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Fig. 1. A scheme summarizing the reviewed generalization error bounds and theorems. Note that our paper focuses on formal error bounds that do not require
empirical estimation of the risk from a test set and primarily focused on scenario bounds both for agnostic and reliable settings.

bounds among practitioners. This overview demonstrates the
need for further research in the field and provides additional
evidence supporting the relevance of this work. The rest of
this paper is organized as follows: Section II presents the
mathematical background, and section III reviews theories
for prescribing generalization error bounds without a test set.
A numerical evaluation of the tightness of the bounds on
thirteen data sets is carried out in Section V. Section VI
closes the paper with a discussion of the results, remarks and
conclusions.

II. PRELIMINARIES

Let us consider a data set Dm = {δi}mi=1 with m inde-
pendent and identical distributed (iid) samples drawn from
an unknown probability space (∆,F,P), comprising an event
space ∆, equipped with a σ-algebra F, and a fixed probability
measure P : F → [0, 1]. The probability P is assumed
unavailable, which is generally the case in practice2. A sample
δ ∈ Dm will be also called a scenario.

A. Supervised learning

A scenario δ = (x, y) ∈ Dm contains a vector of explana-
tory variables x ∈ X ⊆ Rnx and target variables y ∈ Y . Based
on the samples in Dm we have to choose a function f ∈ F ,
with f : X → Y , from a function class F with the goal that
f is a good predictor of y, given a newly seen sample x. The
process of learning a predictive model (a function), can be
defined as a generic data-driven decision-making problem,

A : ∆m → F , m = 0, 1, 2, ..., (1)

where A is a map from the samples space ∆m = ∆×∆× ...
(m times) and the decision space F . Note that the data
set Dm is a random realization from the event space ∆m

2Here, albeit unavailable, the measure P is assumed stationary (fixed).

and, without loss of generality, the map A can be seen as
a sophisticated optimization method or a simple heuristic to
select a function f ∈ F based on the available data Dm ∈ ∆m.
For instance, the decision-making problem A for selecting a
predictive model is generally focused on the identification of a
function f? := A(Dm) = arg min

f∈F

∑
δ∈Dm lf (δ) that achieves

a small probability of prediction error, i.e., that minimizes the
expectation of a loss function lf (δ).

B. Binary Classification

Binary classification is a special type of supervised learning
where new observations of explanatory variables x must be
categorized into one of two classes. For binary classification
problems the dimension of δ is, therefore, nx + 1 as y ∈
{−1,+1} ⊂ Y and an indicator function for the loss can be
considered as follows:

lf (x, y) =

{
1, if y 6= f(x)
0, otherwise

where, if y 6= f(x) the loss function results in lf (x, y) = 1
and the model f fails to classify the class of x correctly. The
expected value of this loss function is the misclassification
probability:

R(f) = P[δ ∈ ∆ : lf (δ) = 1],

where R is also known as error probability or risk. As we
assume to not have direct access to P we cannot evaluate
R(f) for a given f precisely and, thus, we have to find other
means of choosing a suitable candidate model f . For instance,
minimizing an empirical (samples-based) estimate of the error
probability given by:

R̂(f) =
1

n

n∑
i=1

lf (δi) (2)
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Here n is the number of available samples for the estimation
(test samples) and lf (δi) is the indicator function for the
misclassification event f(xi) 6= yi.

C. Realizable and agnostic problems

Given a probability measure P and a hypothesis class F
we call the learning problem realizable if and only if there
exists a function f∗ ∈ F such that R(f∗) = 0. If such an
f∗ does not exist we call the learning problem agnostic. A
further distinction can be made between learning problems that
are realizable for probability distributions of δ and learning
problems that are realizable for a specific data set Dm,
[44]. We will refer to the latter problems as data-realizable
problems. In contrast, a problem is called data-agnostic if
it is not data-realizable for Dm. For instance, consider the
following binary classification problem:

f? = arg min
f∈F

J(f) (3)

s.t.: lf (δi) = 0 ∀δi ∈ Dm.

where J(f) is a cost function and the samples in Dm define
m constraints on the miss-classification errors. This simple
learning problem is data-realizable for Dm if and only if a
function f? exists such that lf?(δi) = 0 for all δi ∈ Dm. In
other words, if the problem admits a non-empty feasible set
and at least one solution exists the satisfies all the constraints
on the loss function. However, feasibility does not guarantee
the problem is realizable for all unobserved realizations of
δ ∈ ∆ from the same distribution. Our work will focus on
both data-realizable and agnostic problems.

D. Support vector machines

Support vector machines [51] have been historically
developed as binary non-probabilistic classifiers and are
nowadays one of the most widely applied ML models in
practice. An SVM classifier is a binary classification function
f : X → {−1,+1} that maximizes the margin between the
decision boundary of f and the two classes defined by the
labels in Dm. In the following paragraphs, we introduce the
standard notation and definitions of SVMs.

1) Linear hard-margin SVM: A linear hard-margin SVM
program is defined as follows:

(w?, b?) = arg min
b∈R

w∈Rnx
‖w‖ (4)

s.t.: yi(w · xi − b) ≥ 1, i = 1, ...,m (5)

where w ∈ Rnx is the normal vector to the hyperplane
defining the boundary of the two classes, b is the bias
term, the parameter b

||w|| determines the offset of the
hyperplane and || · || is the L2 norm operator. In view of
the earlier notation, our model class F is now given by
Flin := {x → sign(w · x + b) | w ∈ Rnx , b ∈ R}. Program
(4) maximizes the width of a hyperplane, proportional to

1
‖w‖ , separating the space X in two regions, one dedicated to
each class. The term hard-margin means that the constraints
yi(w ·xi−b) ≥ 1, i = 1, ...,m must be satisfied. If the learning

problem is realizable with respect to a linear hypothesis class,
the optimal hyperplane defined by the parameters (w?, b?)
always exists.

2) Non-linear soft-margin SVM: Two standard extensions
of the linear hard-margin SVM are towards a non-linear func-
tion class and towards a program that relaxes the separability
constraints. The non-linearity is achieved by introducing a
kernel function ψ(x) : X −→ Z , mapping the physical space
X to a Hilbert space Z ⊆ Rnz , whilst margin relaxation
is achieved introducing slack variables ζ in the constraints
of program (4). Note that the Hilbert space is generally of
higher dimension and the function ψ(x) does not need to be
explicitly defined [33]. All relevant computations rely only on
the evaluation of a kernel K(xk, xj) := ψ(xk) · ψ(xj), i.e.,
the evaluation of inner products. The kernel K(·, ·) can be
used to operate in Z without the need for actually computing
the coordinates of the measurements in the Hilbert space in
an explicit way [43], [52]. The combination of kernel and
constraint relaxation gives rise to a non-linear soft-margin
SVM program:

(w?, b?, ζ?) = arg min
b∈R,w∈Rnz
ζ∈Rm+

‖w‖+ ρ

m∑
i=1

ζi : (6)

s.t: yi(w · ψ(xi)− b) ≥ 1− ζi, i = 1, ...,m

where ζ is a vector of m non-negative slack variables and
ρ > 0 is a scalar regularization parameter weighting the cost of
margin violations. Program (6) seeks an optimal hyper-plane
(w?, b?) which linearly separates the data in the space Z and
minimizes the cost of margin violations given by ζ?. A linear
separator in the Hilbert space will map back to a non-linear
separator in X . Hence, the hypothesis class F is now given
by Fnlin := {x → sign(w · ψ(x) − b) | w ∈ Rnz , b ∈ R}
and the optimized hyperparameters θ? = (w?, b?) defines a
unique classifier f? = f(x; θ?) ∈ Fnlin. Note that although we
use the kernel function ψ explicitly for ease of notation, all
those computations may also be done using only evaluations
of the kernel K, see for example Equation (19) in [52].

3) Margin violation and misclassification error: Label pre-
dictions can be assigned to new observations x by ŷ =
f(x; θ?) and misclassification occurs if y 6= ŷ or, equivalently,
if y(w? · ψ(x) − b?) < 0. The misclassification probability
(error/risk) for an SVM classifier is defined by:

R(θ?) := P[y(w? · ψ(x)− b?) < 0]. (7)

The margin violation event occurs if a new sample pair
(x, y) violates the constraint in the training program and the
probability of margin violation V (θ?) is defined as follows:

V (θ?) := P[y(w? · ψ(x)− b?) < 1]. (8)

Note that, by definition, the margin violation probability
bounds from above the misclassification probability, i.e.,
V (θ?) ≥ R(θ?).
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4) Other SVM models: Many variants of the hard-margin
and soft-margin SVM models have been proposed in the
literature to tackle regression tasks [53], [54], fault and
anomaly detection [35] for prognostics of industrial assets
and components [55]–[57]. For instance, support vector data
descriptor (SVDD) [58] and one-class SVM models [59]
are often used for anomaly detection, where SVDD iden-
tify abnormalities beyond an optimized spherical region in
the kernel space and one-class SVM beyond an optimized
hyperplane. Both models undergo training through convex
optimization constrained by random scenarios, making the for-
mal bounds discussed herein relevant. Similarly, twin support
vector machines (TWSVM) undergo convex optimization of
non-parallel hyperplanes for class separation, often yielding
improved accuracy and generalization compared to standard
SVMs. TWSVM were originally introduced for pattern classi-
fication [60], [61] and later extended to tackle active learning
tasks [62], multi-class learning, [63], and other applications
[64], [65]. A comprehensive TWSVM survey [66] covered
clustering [67], semi-supervised classification [68], and outlier
detection [69]. Although the theoretical approaches reviewed
in this work are applicable to advanced SVM models and
general classes of learning problems, including neural network
models [70], [71], to ease the presentation, this work only
focuses on formal generalization for traditional binary SVM
classifiers.

E. Generalization error bound

As we only have a finite amount of data available, the values
of R and V are unknown. Nonetheless, generalization error
bound analysis can be used to find upper and lower bounds on
these probabilities. Formally, given an algorithm A as defined
above, a generalization error bound is a function BA(β,m, I)
of a confidence parameter 0 < β < 1, the sample size m, and
other (potentially algorithm dependent) parameters I such that,
with probability of at least 1− β over the random sample, it
holds that

R(A(Dm)) ≤ B(m,β, I). (9)

In the next section, we present an overview of some of
the most popular theories for those bounds and we then
focus more in detail on complexity-based bounds, compression
learning bounds and their link to new bounds obtained via
scenario theory. Then, in the following section, specific results
are presented and later used as a basis for the numerical
comparison.

III. GENERALIZATION ERROR BOUNDS: AN OVERVIEW

Several types of formal generalization error bounds can be
found in the scenario theory and statistical learning theory
literature and can be summarized as follows:
PAC-Bayes methods use, amongst other concepts, a prior
distribution over function class F to find generalization error
bounds. The PAC-Bayesian theory has been successfully
used in a variety of topics, including sequential learning,
classification, and analysis of heavy-tailed data, e.g., [28],
[72], [73], for ranking and bounding probabilities of non-
iid samples, [74], and for enhancing the generalization

of regularized Neural Networks [75]. The PAC-Bayes
framework requires a definition of a prior distribution over
the different classifiers (generally before observing the data),
and the definition of a suitable likelihood that is needed
to approximate a posterior distribution (once the data is
collected).

Complexity-based methods quantify the generalization of
ML models based on a measure of the capacity (complexity,
expressive power, or richness) of the class of models
F . If the models in F are complex, the optimized f?

is more likely to over-fit the data and generalize poorly.
The Vapnik–Chervonenkis (VC) dimension, as originally
introduced by Vapnik [31], is a complexity measure which
helps to bound the difference of the empirical risk and true
risk uniformly over the model class. Given a hypothesis class
F , the VC-dimension is the maximum number of features
x that can be labelled in all possible ways with functions
from F . Other examples of complexity-based bounds include
extensions based on the VC-dimension [76], FAT-shattering
dimension, covering number, global and local Rademacher
complexity [77], union bound and shell bound methods
[78]. In the case of learning a hyperplane, which is the
essence of an SVM, one can relate the VC dimension to
the margin between the hyperplane and the sample Dm.
Complexity-based bounds apply to deterministic classification
rules and algorithms but are not usable for learning algorithms
for which F is unknown or data-dependent.

Compression-based methods estimate algorithms’
generalization in terms of their ability to create a reduced-size
representation of the data, i.e., the algorithms’ ability to
compress samples [79]. If the data representation is small
(relative to the sample size), the compression rate will be
high, and the algorithm will likely generalize well. In contrast
to complexity-based bounds, which provide bounds based on
a capacity measure of F , compression-based error bounds are
data-dependent, as they depend on both the particular choice
of learning algorithms A and the random data in Dm. Refer to
[80], [81] for other examples of data-dependent error bounds.
Littlestone and Warmuth [32] originally introduced the
concept of compression for zero/one loss functions, relating
the bounds to early works on Kolmogorov complexity.
A compression function maps the data to a subset of the
original data (a compression set) that suffice to reconstruct the
resulting model f?. The compression function then describes
how much we may compress the data while ensuring that A
provides the same f? under the uncompressed Dm. The main
limitation of compression methods are the huge compression
rates needed to obtain informative bounds, rates which are not
always achievable in practice. A conceptually close approach
is the coreset learning theory [82], which relates to the optimal
subsampling literature and defines generalization as a small
weighted subset set of samples that approximates this loss for
every element in a query set. Compression bounds are already
available for complex models, including deep neural networks
[83], leading to orders of magnitude better performance when
compared to PAC-Bayes and complexity-based bounds.
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Scenario theory was, differently from previous approaches,
originally introduced to investigate the error probability of
convex optimization problems with randomized constraints
[84], [85]. Those are learning problems where samples of
uncertain factors define deterministic convex constraints [86],
and the hypothesis class defines a parametric family of convex
functions. Scenario theory has been extensively studied for
hard-constrained (data-realizable) convex programs [86]–[89]
and recently extended to non-convex cases [90] and more
abstract classes of decision-making algorithms [91]. Scenario
bounds can be derived before solving an optimization problem
or can be tailored to the optimized solutions. The former
bounds are known as a-priori and, like complexity-based
bounds, are derived independently from the data. For instance,
one of the most acclaimed results from scenario theory proved
that the error distributions of solutions to convex problems
are bounded by beta distributions whose parameters can be a-
priori determined by the number of training samples and the
number of optimization parameters. This bound was proven
to be tight (exact) for a whole class of problems named fully-
supported [86]. Differently, scenario bounds tailored to the
specific models are known as a-posteriori bounds and are
based on a data-dependent hypothesis, like compression-based
bounds. For instance, empirical error levels of the solution
of min-max problems have been shown to follow a Dirichlet
distribution, whose marginals are beta distribution [88]. Sce-
nario theory combines ideas from complexity-based methods
and compression-based methods. Similarly to VC-bounds,
the complexity of the class F defines data-independent (a-
priori) scenario bounds. Like compression-based methods, a-
posteriori scenario bounds depend on a notion of how much
one may compress the given learning rule A for a given Dm.
A learning rule A having a higher degree of compression leads
to better generalization guarantees, thus, an interesting link is
established between the complexity of the candidate class F
and the joint complexity of a specific f? ∈ F and the observed
data Dm.

IV. GENERALIZATION ERROR BOUNDS: SPECIFIC RESULTS

We now present specific generalization error results, first
from scenario theory and then from statistical learning theory.

A. Scenario Theory

In scenario theory, a scenario program A(Dm) defines a
general class of data-driven decision-making problems, as
in equation (1). Without loss of generality and to ease the
presentation, we focus on a specific class of programs where
a set of deterministic constraints are defined by the random
samples in Dm, like in SVM training programs. In the next
sections, we formally introduce convex hard-constrained (data-
realizable) and soft-constrained (agnostic) scenario programs
and establish their link to SVM training programs (4) and (6).

1) Hard-constrained scenario program: A hard-
constrained convex scenario optimization program is
defined as follows:

min
θ∈Θ

J(θ), s.t. f(θ, δi) ≤ 0, δi ∈ Dm (10)

where θ ∈ Θ ⊆ Rnθ is a vector of design variables
constrained in a closed convex set Θ, J : Θ 7→ R is a convex
cost function and f(θ, δ) : Θ ×∆ → R is a convex function
in θ defining m hard-constraints in (10). An optimal feasible
design θ? must satisfy f(θ?, δi) ≤ 0 for all i = 1, ...,m, with
no exception and this often leads to a feasibility issue.

2) Soft-constrained scenario program: A soft-constrained
reformulation of (10) is given by:

min
θ∈Θ
ζ∈Rm+

J(θ) + ρ

m∑
i=1

ζi : (11)

s.t. f(θ, δi) ≤ ζi, δi ∈ Dm

where ζ is a m-dimensional vector of non-negative slack
variables. A ζi = 0 means that the hard-constraint imposed
by the ith sample is satisfied, i.e., f(θ, δi) ≤ 0. On the other
hand, a ζi > 0 implies a violation of the hard constraint. Note
that SVM programs are special classes of A(Dm) where the
cost and constraint functions are defined by

J(θ) = ||w|| f(θ, δ) = 1− yi(w · ψ(xi)− b), (12)

with δ = (x, y) being a sample and θ = (w, b) the
parameters of the separating hyperplane. When a kernel
operator is applied, the number of design variables becomes
nθ = nz + 1, i.e. the dimension of the Hilbert space plus one
due to the bias term.

3) Assumptions and definitions: Scenario theory can be
used to assess how well an optimal design θ∗, so a solution
of the optimization programs (10) or (11), generalizes to yet
unseen situations δ ∈ ∆. Definitions, assumptions and relevant
theorems needed to compute generalization bounds will be
presented next.

Definition 1: (Violation probability) The probability

V (θ?) = P [δ ∈ ∆ : f(θ?, δ) > 0] (13)

is called violation probability. Given a reliability parameter
ε ∈ [0, 1], a design θ? is called ε-robust if V (θ?) ≤ ε.
Note that for SVM programs, the violation probability
coincides with the ‘true’ margin violation probability (see the
Appendix for the definition) and, thus, an ε-robust SVM θ?

satisfies R(θ?) ≤ V (θ?) ≤ ε, i.e., a bound on the worst-case
classification error probability.

Definition 2: (Non-reducible support set) A support
set S ⊆ Dm is a k-tuple S = {δi1 , ..., δik} for which the
solutions of the scenario program A(S) and program A(Dm)
are identical. A set S? ⊆ S is non-reducible if for any δ ∈ S?
the solution of A(S? \ δ) differs from the one of A(Dm),
i.e., the support set is of minimal cardinality. A scenario
program generally admits several support sets and the set S?
with the smallest cardinality renders the best bounds. The
dimension of S? will be denoted as s?m = |S?|, where | · | is
the cardinality operator.
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Assumption 1: (Existence and uniqueness) For every data
sequence Dm, the design solution θ? of A(Dm) exists and is
unique.

Assumption 2: (Non-degeneracy) For any positive integer
m ∈ N0 and scenario set Dm, the solution of the scenario
program A(Dm) coincides with probability 1 with the
solution of A(S?).

When program (10) is convex, non-degeneracy is a mild
assumption since support constraints in S? are always active,
and a (possibly reducible) support set can be easily identified
[92]). In fact, the solution of convex learning programs is
generally unaffected by removing inactive scenarios for which
f(θ?, δ) < 0 at the optimum. In the general non-convex
case, however, S? might include non-active constraints and
the non-degeneracy assumption rarely holds. Hence, the
removal of a single non-active constraint, i.e., the removal
of samples δ for which f(θ?, δ) < 0, can yield a new
optimum having a smaller cost [92]. A recent extension of
the theory allows relaxing the non-degeneracy assumption
[93] and allows extending the scope of scenario theory to
a broader domain of learning problems where the sample
constraints are non-convex functions of the model parameters
and observations.

4) Bounds for hard-constrained programs:
Theorem 1: [86, Theorem 1] Under assumptions 1, 2,

stationary P and iid samples in Dm the distribution of V (θ?),
for θ? being the solution of (10), is bounded by a Beta
distribution:

Pm[V (θ?) > ε] ≤
nθ−1∑
k=0

(
m

k

)
εk(1− ε)m−k = β (14)

where nθ is the number of design variables, β ∈ [0, 1] is a
confidence parameter, and Pm is a product probability due to
independence of the m samples.

Theorem 1 can be easily derived from Helly’s Theorem,
showing that s?m ≤ nθ for convex programs under the given
assumptions. Note that the bound ε is data-independent as it
can be a-priori computed, i.e., it is obtained before solving
(10), and it only requires the number of design variables nθ,
number of samples m, and a desired confidence β. If program
(10) is fully supported, that is, if s?m = nθ with probability
1, Eq. (14) holds with the equality sign. An extension of
Theorem 1 allows for k samples δ to be intentionally removed
from the data set Dm, for instance, the ones making program
(10) unfeasible. This approach makes (10) a data-realizable
problem. As a result, the optimized θ? enjoys an improved
J(θ?) for the cost of a weaker certificate of generalization
[86]. However, many real-life problems are only partially
supported (s?m < nθ) and the following Theorem 2 renders
tighter bounds.

Theorem 2: [94, Theorem 2] Consider a convex scenario
program defined as in (10). Under assumptions 1, 2, stationary

P and iid samples in Dm the solution θ? of (10) satisfies

Pm[V (θ?) > ε(s?m)] ≤ β, (15)

where the reliability ε(k) = 1 − t(k) is the unique solution
in [0,1] of the following polynomial equation in t for any
k ∈ {0, ..., nθ}:

β

m+ 1

m∑
j=k

Bj(t; k)−
(
m

k

)
tm−k = 0 (16)

Here Bj(t; k) =
(
j
k

)
tj−k is a binomial expansion.

Theorem 2 gives a generalization bound V (θ?) ≤ ε(s?m)
at a confidence level 1 − β and reliability parameter ε(s?m)
determined from (16). In contrast to (14), ε(s?m) is a-
posteriori computed by enumerating support scenarios s?m in
correspondence of θ?.

5) Bounds for soft-constrained programs: To extend
the scope of scenario-based generalization bounds to soft-
constrained problems, like the one in equation (11), a
technical assumption of non-accumulation is required. The
assumption states that, for every θ ∈ Θ and a ∈ R, the
function f(θ, δ) does not have concentrated mass, i.e.,
P[δ : f(θ, δ) = a] = 0. This assumption is generally satisfied
when δ admits a probability density function.

Theorem 3: [91, Theorem 4] Consider a convex scenario
program as in equation (11). Given the aforementioned as-
sumptions, stationary P and iid samples in Dm the probability
V (θ?) is bounded by:

Pm[ε(s?m) ≤ V (θ?) ≤ ε(s?m)] ≥ 1− β, (17)

where ε(k) = max{0, 1 − t(k)}, ε(k) = 1 − t(k) and
{t(k), t(k)} are solutions of a polynomial equation in t:

Bm(t; k) =
β

2m

m−1∑
j=k

Bj(t; k) +
β

6m

4m∑
j=m+1

Bj(t; k) (18)

where k ∈ {1, ...,m−1} is the number of support constraints.
For the special case k = m, the upper bound is set to ε(k) = 1
and the lower bound is obtained solving

1 =
β

6m

4m∑
j=m+1

Bj(t; k). (19)

For a soft-constrained SVM design, Theorem 3 gives high
probability upper and lower bounds on the probability of
margin violations. Here s?m is the number of support vectors,
i.e. the number of samples for which 1−y(w?ψ(x)−b?) ≥ 0.
If w? = 0, s?m is the number of data points whose label
belongs to the class with fewer elements [33].

We refer to the bounds introduced in this section as the
scenario bounds. We introduce generalization bounds from
the statistical learning literature, based on complexity and
compression, next. For our comparison, we use the most recent
results on generalization bounds for SVMs.
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B. Complexity-based bounds for SVM

For realizable cases, [24] solved a longstanding problem by
showing that the error of an SVM drops as Θ( dm + log( 1

β )),
where d denotes the VC-dimension. The specific bound they
provide is defined as follows:

Theorem 4: [24, Theorem 15] Under the realizability as-
sumption from Section II-C, it holds that for all data set sizes
m > 2(d+ 1), with probability of at least 1− β,

R(θ?) ≤ 2

m− 2(d)

(
(d) ln(4) + ln

(
1

β

))
, (20)

where θ? = (w?, b?) is the solution of (4) and d again denotes
the VC-dimension of the SVM and is equal to d = nx + 1.

Next, we present two results in the agnostic case, taken from
[95]. The first theorem bounds the generalization error in
terms of the margin of the SVM. The second bound is more
general and not directly targeted at SVMs, as it uses the
VC dimension for general linear predictors d = nx + 1. In
view of our earlier discussions, the margin-based bound is
an a-posteriori bound, as it needs to know the margin of the
resulting SVM. The VC dimension-based bound is an a-priori
bound, as the VC dimension is known before any learning.

Theorem 5: [95, Theorem 15] Let θ? = (w?, b?) be the
solution of the SVM program (6) and let l?SVM (x, y) =
min{max{0, 1−y(w? ·x+b?)}, 1} be the so called ramp loss.
If r = max

1≤i≤m
‖xi‖, then with probability of at least 1 − β it

holds that:

R(θ?) ≤ 1

m

m∑
i=1

l?SVM (xi, yi)+

1√
m

(
4
√

(Λ + 1)2 + 3

√
ln(

π4Λ2

18β
)

)
. (21)

where Λ = dred‖w?‖e ∈ N is the product of smallest integers
larger than r and ‖w?‖.

The second term on the right-hand side of Equation 21
is derived from Rademacher complexity theory, whilst
the first term provides a lower bound on the empirical
risk estimated from the slack variables in (6), i.e.,
1
m

∑m
i=1 l

?
SVM (xi, yi) ≤ 1

m

∑m
i=1 ζ

?
i .

Theorem 6: [77, Corollary 3.19] For all predictors f(θ) ∈
Flin, so also for the SVM solution f(θ?), it holds that

R(θ) ≤ R̂(θ)+ (22)

1√
2m

(√
4(d+ 1) ln(

em

d
) +

√
ln(

1

β
)

)
, (23)

where d = nx + 1 is the VC dimension of Flin and e is
Euler’s constant.

Note that equation (22) has in comparison to (21) an additional
logarithmic term ln(m) in the number of samples, which can
in principle be removed.

C. Compression-based bounds for SVM

Similarly to a-posteriori scenario bounds, compression
bounds depend on the number of data points that are strictly
necessary to reconstruct the optimum. This quantity is known
as compression size in compression learning and is equivalent
to the support set size |S| in scenario theory. Note that S
does not have to be of minimal cardinality for the bounds to
apply. However, smaller values of the compression rates led
to better generalization error guarantees.

In order to formally introduce compression learning
bounds, we will make use of the mathematical framework
presented in [44], [46]. We consider a learning algorithm A
and a compression rule, C, where we call A permutation
invariant if the mapping does not depend on the ordering of
the input data set Dm. The rule C : ∆m → ∆dcp compresses
the data Dm to a smaller data set Ddcp ⊂ Dm. A compression
scheme can be any rule that identifies a compression set
Ddcp such that the SVM classifier obtained from the original
set Dm is exactly the same as the SVM obtained from the
compressed set Ddcp . Clearly, the compression set coincides
with the set of support scenarios S as defined in scenario
theory, which is equivalent to the number of support vectors
in the case of SVMs, showing a clear parallel between the
two approaches. As in the previous settings we first present a
result in the realizable and then in the agnostic setting.

Theorem 7: [96, Theorem 1] Consider a realizable learning
problem and let A : ∆m → F be a permutation invariant
learning rule with R̂[A] = 0. Let dcp(Dm) be the size of
a compression scheme for Dm, such that θ? = A(Dm) =
A(Ddcp). For any P, m ∈ N with probability at least 1− β ∈
[0, 1] over the sampling of Dm it holds that

R(θ?) ≤
1

m− dcp

(
ln

(
m

dcp

)
+ ln(m) + ln

(
1

β

))
. (24)

Theorem 8: [96, Theorem 2] Consider an agnostic learning
problem and let A : ∆m → F be a permutation invariant
learning rule. Let dcp(Dm) be the size of a compression
scheme for Dm, such that θ? = A(Dm) = A(Ddcp). For
any P, m ∈ N, training data set Dm, and β ∈ [0, 1], with
probability at least 1− β it holds

R(θ?) ≤ m · R̂(θ?)

m− dcp
+

 ln
(
m
dcp

)
+ ln(m) + ln

(
1
β

)
2(m− dcp)


1
2

(25)
For additional readings and recent advancements on

compression-based bounds for both realizable and agnostic
problems, the interested reader is refered to [97], [98], [99].
In [97], Hanneke and Kontorovich show that the optimal
rates of agnostic compression schemes with compression
rate k is often

√
k ln(m/k)/m which is in contrast with

the known rate
√
d/m of convergence of complexity-based

agnostic problems, for a VC-dimension d. In [99], the authors
studied stable compression schemes for a family of supervised
learning algorithms. A new and enhanced margin bound for
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Theorem Learning theory Data-indep. Data-depen. Data-realizable Data-agnostic Error bound
a-priori a-posteriori hard-constr. soft-constr. dependence on

1 Scenario 3 7 3 7 ε(m,nθ, β)
2 Scenario 7 3 3 7 ε(m, s?m, β)
3 Scenario 7 3 3 3 ε(m, s?m, β)
4 VC-Complexity 3 7 3 7 ε(m, d, β)

5 Rademacher-Complex. 7 3 7 3 ε(m, r, |w|, R̂, β)
6 VC-Complexity 7 3 7 3 ε(m, d, R̂, β)
7 Compression 3 7 3 7 ε(m, dcp, β)

8 Compression 7 3 7 3 ε(m, dcp, R̂, β)

TABLE I
A COMPARISON BETWEEN THE REVIEWED THEOREMS, FUNCTIONAL DEPENDENCY OF THE BOUNDS AND THEIR APPLICABILITY A-PRIORI, E.G, EVEN

BEFORE SOLVING THE LEARNING PROBLEM, AND TO REALIZABLE LEARNING/AGNOSTIC PROBLEMS, I.E., OPTIMIZATION METHODS LEADING TO
NULL/NON-NULL EMPIRICAL TRAINING ERROR.

SVM is proposed and removing a log factor. In [98], Cohen
and Kontorovich discuss agnostic learning with unbounded
metric losses and introduce a new technique called semi-stable
compression.

V. EXPERIMENTAL PROCEDURE AND RESULTS

A numerical procedure has been developed to compare the
effectiveness of the revised bounds. The procedure works as
follows:

1) Initialize: Choose the parameters for the bounds, includ-
ing the kernel type, scale parameter, confidence level,
number of experiments Nexp and ρ.

2) Sample training data: Randomly select one of the
thirteen data sets, a subset of features (between 50%
to 100% of nx) and sample size (between 5% and 35%
of the original size such that m ≤ 2000 for efficiency’s
sake).

3) Train an SVM model: Solve program (6) and compute
an unbiased estimator for the error probability R(θ?).

4) Generalization bounds: Compute the number of sup-
port vectors s?m, VC dimension, the average of the
ramp loss r, and ||w||. Use s?m, β and other statistics
to compute the agnostic learning bounds as previously
described. If any upper bound exceeds 1, set it to 1 (non-
informative). If there are multiple bounds available, such
as agnostic complexity-based ones, choose the bound
with the smallest magnitude

5) Assess tightness: Evaluate the tightness of the scenario
bounds in each experiment by estimating the difference
γSB = ε(s?m) − R(θ?) and similarly compute the
tightness of the complexity-based bounds (γCX ) and the
compression-based bounds (γCP ).

6) Statistical analysis of randomized experiments Repeat
steps 2 to 5 a total of Nexp times. Compare the expec-
tation and variance of the tightness metrics to assess the
relative performance of the different bounds.

Quantitative and qualitative analyzes of the tightness of
the error bounds and convergence are analyzed for varying
hyperparameters and on thirteen real-world data sets obtained
from UCI, OpenML repositories, and MNIST.

A. The thirteen data sets
The 13 real-world data sets have been modified for binary

classification and randomly sampled to generate new synthetic

data sets. Here is a brief description of each classification
problem:

1) MNIST: A data set of handwritten digits with 784
features per image (pixels). We classify 14000 samples
of digits 1 and 3.

2) LOL: 9879 League of Legends game outcomes charac-
terized by 38 input features to be classified as win or
lose.

3) Winequality: It contains 4898 wine samples, nx = 11
features, to be classified as good (score exceeding 5) or
bad wines.

4) Ionosphere: A collection of m = 351 radar samples to
be labelled as good or bad using nx = 38 features.

5) Abalone: The goal of predicting the age of abalones
from nx = 8 biological characteristics. Abalones with
over nine rings are labelled as old.

6) Ailerons: a binarized version with nx = 39 features and
m = 13750 samples.

7) Spambase: 4601 labelled e-mails with nx = 57 features.
The goal is to classify future SPAM emails.

8) Data Eye: The goal is to predict when a person’s eyes
are open/closed given 14780 continuous EEG measure-
ments with 14 features (missing data and outliers have
been removed).

9) Postures: 13600 samples with 8 coordinates from five
hand postures (X0:2, Y0:2 and Z0:1). Postures 1 and 3
are used for the binary classification task.

10) Banknote authentication: m = 1372 images with
nx = 4 feature taken from genuine and forged banknote
specimens. The goal is to identify forged samples.

11) Dota: The goal is to classify the binary outcome of
m =102944 game plays from 116 features.

12) Monk Problem: m = 601 samples and nX = 6 features
usable to predict the outcome of a logical formula.

13) Gina Agnostic: A data set for agnostic handwritten digit
recognition that contains m = 3468 samples of two
digits having nx = 970 features (pixels).

B. Qualitative Comparison

This section analyzes the behaviour of the bounds when the
hyperparameters are varied, particularly the scaling parameter
of the kernel. One interesting observation is that when using a
Gaussian kernel and in an agnostic setting, the VC dimension
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is infinite a priori. Hence, the margin bound in Eq. (21) must
be used. Figure 2 illustrates the trend of the bounds on the
League of Legends data set, and a similar trend has been
observed in many other data sets as well. It is worth noting that
the complexity-based bound, computed according to Theorem
5, failed to capture the trend of the test error estimate. On the
other hand, the scenario bound followed the error much better.
Figure 2 depicts this issue and shows a study of underlying
statistics used to compute the bounds. The complexity-based
bound incorporates the training loss

∑m
i=1 l

?
SVM (xi, yi) and

the norm |w?|. The training loss initially increases as we
over-fit the data, while the norm |w?| closely tracks the test
error. However, changes in |w?| are much smaller than the
changes in the training loss. Consequently, the margin bound
underestimates the impact of having a smaller norm and fails
to capture the trend of the test error. In other experiments, we
have observed that both the scenario and complexity bounds
follow the true error, however, we have never encountered a
failure with the scenario bounds.

Fig. 2. The effect of the kernel scale on the test error, the formal generalization
error bounds, and support vectors. The curves have been rescaled for clearer
representation, as the focus is on observing the trends rather than the absolute
values.

C. Quantitative Comparison

The experimental procedure described in Section V
is applied to train Nexp =5000 linear soft-margin SVM
classifiers for the 13 classification problems and setting
kernels scale and ρ equal to one. This procedure yields 5000
randomized training sets containing m ∈ [18, 2000] samples
and nx ∈ [3, 970] features. The tightness scores of the formal
generalization error bounds are compared for a confidence
parameter β = 10−2. The Rademacher margin bound in Eq.
(21) is larger than one for most of the experiments (97.98%),
whilst this happened in 2068 (41.36%) cases for the VC
dimension-based bounds in Eq. (22). Hence, for linear SVMs,
the VC bounds generally offer better results compared to the
margin bounds. The compression-based bounds also resulted
in a larger than one bound for many cases (87 % of the
experiments). The scenario bounds resulted in better scores
(tighter bounds) in about 71% of the 5000 experiments.

Figure 3 compares the generalization error bounds with the
test errors and presents the generalization error bounds and
test errors from the 13 data sets with different coloured
markers. As a figure of merit, a pair-wise comparison of the
VC and scenario bounds is presented in the top left panel,
whilst pair-wise comparisons of the empirical errors (x-axis)
and the formal error bounds (y-axis) are displayed in the two
panels on the right-hand side. Note that complexity-based
bounds on the generalization error are always non-informative
for the Gina agnostic, MNIST and Monk problem data sets,
i.e., a generalization error in [0,1]. Differently, scenario
bounds are often non-vacuous and always informative (and
especially much better for the MINST data set).

1) Distribution of γ with respect to the individual data
sets: We further investigate the efficacy of the bounds on the
individual data sets and Figure 4 present the distribution of the
tightness scores using Box and Whisker plots. Specifically,
each box represents the 5th and 95th percentiles for the
distribution of γ, calculated from randomized classification
experiment (5000 for each data set) with linear soft-margin
SVM and setting kernels scale and ρ equal to one. The top,
middle, and bottom panels correspond to scenario bounds
(γSB), complexity-based bounds (γCX ), and compression
bounds (γCP ), respectively. The red regions indicate poor
performance, with a discrepancy score γ ≥ 0.4, and green
regions represent good performing bounds with γ < 0.4.
The analysis demonstrates that scenario bounds are often the
most effective and useful in many classification problems,
outperforming other formal generalization bounds for eight
data sets. On the other hand, complexity-based bounds are
effective only for three data sets (postures, data eye, and
abalone), while compression bounds show good outcomes for
two data sets (banknote and MNIST).

2) Bounds behaviour with respect to the test error: Figure 5
presents the formal error bounds and empirical error estimated
from a test sets. The test errors are sorted in ascending order
on the x-axis. The pentagram green markers represent the
compression bounds, the blue markers denote the complexity-
based bounds, and the red cross markers represent the scenario
bounds. This analysis reveals that the scenario bounds have
the best performance when the SVM model achieves high
accuracy. However, when the accuracy of the SVM is low,
e.g., an error greater than 0.2 in Fig 5 for the linear case, the
statistical learning bounds can provide tighter generalization
guarantees. It is also worth noting that for lower errors, the
compression bounds occasionally outperform the complexity
bounds but still do not perform as well as the scenario bounds.

3) Results for different ρ and optimized kernel scale:
To analyze the effect of ρ and kernel type, we chose three
values for ρ 1, 100, and 5000, and used two different kernel
functions, linear and Gaussian. We trained 5000 classifiers for
each of the six combinations of kernel type and regularization
parameter. Unlike our previous analysis, we optimized the
kernel scale using an empirical/heuristic optimization method
(the MATLAB auto option). Note that as ρ approaches infinity,
the soft-margin constraints in the SVM training programs
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Fig. 3. Scenario and complexity-based bounds compared to the error estimate for soft-margin linear SVM classifiers. On the right panels, the dashed lines
show the regions where the formal bound fails, whilst the left panels show experiments having scenario bounds tighter than the complexity bounds. The
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Fig. 4. Box and Whisker plots of tightness scores on the individual data sets. Scenario, complexity, and compression bound are presented, respectively, in the
top, central and lower panels. In green colour, we highlight experiments with a relatively small discrepancy score, γ < 0.4, i.e., the tighter bounds. Clearly,
scenario bounds outperformed the reviewed bounds in many cases.



12

Linear Kernel

Radial Basis Kernel

Fig. 5. The resulting scenario bounds (red markers), complexity bounds (blue markers) and compression-based bounds (green markers) are sorted by the
values of the empirical test error estimates (black markers and x-axis). Results for the linear and Gaussian kernels are presented in the top and bottom panels
respectively. Scenario bounds generally outperform other statistical learning bonds, especially when the error estimate is small.

ρ = 1 ρ = 100 ρ = 5000
Kernel E[γCX ]± σ E[γSB ]± σ E[γCP ]± σ E[γCX ]± σ E[γSB ]± σ E[γCP ]± σ E[γCX ]± σ E[γSB ]± σ E[γCP ]± σ
Linear 0.46 ± 0.12 0.54± 0.10 0.61 ± 0.13 0.56 ± 0.18 0.45 ± 0.13 0.74 ± 0.13 0.57 ± 0.19 0.35 ± 0.14 0.64 ± 0.16
Gaussian 0.40 ± 0.10 0.49 ± 0.04 0.50± 0.06 0.67 ± 0.15 0.59 ± 0.13 0.70 ± 0.15 0.72 ± 0.13 0.49± 0.17 0.72 ± 0.16

[γ
CX

, γCX ] [γ
SB

, γSB ] [γ
CP

, γCP ] [γ
CX

, γCX ] [γ
SB

, γSB ] [γ
CP

, γCP ] [γ
CX

, γCX ] [γ
SB

, γSB ] [γ
CP

, γCP ]

Linear [0.11,0.87] [0.29,0.86] [0.43,0.91] [0.15,0.98] [0.15,0.80] [0.42,0.98] [0.05,0.74] [0.07,0.99] [0.14,0.93]
Gaussian [0.25,0.99] [0.34,0.99] [0.43,0.99] [0.48,0.99] [0.28,0.92] [0.45,0.98] [0.46,1.0] [0.10,0.92] [0.40,0.99]

TABLE II
THE RESULTS FOR γCX , γSB , AND γCP FOR LINEAR AND GAUSSIAN KERNELS AND THREE VALUES OF THE REGULARIZATION PARAMETER ρ. RESULTS

WERE OBTAINED FOR AN OPTIMIZED KERNEL SCALE (MATLAB ’AUTO’ OPTION) AND 5000 RANDOM EXPERIMENTS.

revert back to the original hard-constrained formulation. This
means that increasing ρ increases the cost of violation, which
force the optimizer to reduce the average magnitude of margin
violations. However, a reduction in the number of support
vectors, it’s not guaranteed. Table II summarizes the numerical
results of our analysis. We present the averages of γCX , γCP ,
and γSB , denoted by E[·], as well as their standard deviations
σ. We also report the minimum and maximum values for each
metric, denoted by γ

SB
, γ

CX
, γ

CP
, and γSB , γCX , γCP ,

respectively, over the 5000 experiments. Our findings indicate
that for ρ ≥ 100, scenario bounds provide much superior
results compared to other bounds. However, for lower ρ values,
complexity-based methods achieve better bounds on average.

VI. DISCUSSION AND CONCLUSION

This work compared scenario theoretic, compression-
learning, and complexity-based approaches to derive formal
generalization error bounds for SVM classifiers. Despite this
restriction on the model class, the revised theories apply to
other models and, more generally, to data-driven agnostic
and data-realizable learning algorithms. The most significant
theorems and mathematical tools used for the proofs and
derivations have been reviewed and discussed. Scenario-based
bounds are often tailored to the specific learning problem
and can be data-dependent or data-independent. The number

of support scenarios, the support vectors for SVM models,
affects the width of data-dependent scenario bounds, which
are thus closely related to the concept of compression size
in compression-learning theory. Differently, data-independent
scenario bounds depend on the number of optimization pa-
rameters, which relates to the expressiveness of the learning
model, and closely relates to model complexity and VC-
dimension. We proposed a series of randomized training
experiments to study and compare the tightness of scenario
bounds with traditional statistical learning approaches, i.e.,
compression-learning and complexity-based bounds. We found
that the scenario bounds are often tighter (especially for
hard-margin cases and for low empirical errors) and that the
margin bound can fail to capture the error trend for changing
hyperparameters, we did not experience this with the bounds
prescribed by other theories. Future research on theoretical
generalization errors must focus on the following key issues:

• Investigate the relationship between data-independent and
data-dependent error bounds for ad ML methods. For
instance, recent works prove the potential of scenario
bounds on game-theoretic models, Echo-State networks
and other ML tools for data description, regression and
prediction [100]–[102].

• There is a need to tackle a lack of theoretical under-
standing on how to provide tight and non-empirical error
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bounds for agnostic and reliable problems for non-iid
samples and using non-stationary probability spaces and
data sequences, e.g., [103].

• Recent works showed that it is possible to study the
generalization of deep learning models without the need
for training nor testing data [20], hence suggesting the
possibility of defining error guarantees from inherent
structural properties of the trained model f(θ?). Future
research efforts are needed to understand the interplay
between the parameters and structure of a trained model
f(θ?) and its capacity to compress the data and generalize
to new examples.

• Finally, we wish to remark that, currently, it is a problem
to derive non-vacuous bounds for complex systems such
as neural networks [104], where it remains problematic
to analyze them in classical frameworks [105]. Regarding
this, it could be of particular interest to look at general-
ization bounds for non-convex agnostic learning problems
[90].
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