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Abstract. Model-based reinforcement learning methods are promising
since they can increase sample e�ciency while simultaneously improving
generalizability. Learning can also be made more e�cient through state
abstraction, which delivers more compact models. Model-based reinforce-
ment learning methods have been combined with learning abstract mod-
els to pro�t from both e�ects. We consider a wide range of state abstrac-
tions that have been covered in the literature, from straightforward state
aggregation to deep learned representations, and sketch challenges that
arise when combining model-based reinforcement learning with abstrac-
tion. We further show how various methods deal with these challenges
and point to open questions and opportunities for further research.
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1 Introduction

With roots in sequential analysis [77], Reinforcement Learning (RL) is a general
framework for learning how to act near-optimally in sequential decision-making
problems. A key challenge for RL is sample e�ciency. Sample e�ciency is im-
portant because, in many problems, it can be expensive, in time or monetary
costs, to collect samples. The combination of Model-based Reinforcement Learn-
ing (MBRL) and abstraction is of interest for improving the sample e�ciency
of learning methods that aim to �nd solutions for sequential decision-making
problems. We de�ne MBRL as an RL method that explicitly learns a model of
the environment. MBRL provides a way to �nd solutions to complex problems
e�ciently [71] and allows for transfer in shifting or related tasks [1, 53]. The state
representation, the input to RL methods, plays an essential role in the learning
process. A state representation will often contain irrelevant details, e.g., when
the input is an image, a large amount can consist of a background that has
no direct relevance to the task. Abstracting the state representation to remove
irrelevant parts for optimal decision-making allows RL methods to learn much
faster. Learning to decide which parts of the state representation are relevant is
a key aspect of abstraction learning.
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Fig. 1. RL with abstraction, the agent observes s̄ = ϕ(s) instead of s. Image from [70].

State abstraction can be carried out in various ways, ranging from state
aggregation [2, 44] to deep learned representations [63, 66]. We provide a high-
level view of the promising research in the �eld, covering a wide range of di�erent
types of state abstractions known from the literature.

Recently MBRL, abstraction learning, and related topics have received much
attention. There are surveys of decision-making under uncertainty [36], MBRL in
general [53], deep MBRL [62], and representation learning in both robotics [42]
and MBRL [32]. Our work takes a broad view of abstraction and focuses on the
additional challenges that arise when combining MBRL and abstraction [1, 57,
69, 70]. The contributions of this work are the following: We detail challenges
that arise from the combination of MBRL with abstraction using the view of
abstraction plus RL as a Partially Observable MDP (POMDP). W e show how
di�erent approaches for MBRL with state abstraction deal with these challenges,
providing a uni�ed view of a wide range of approaches in the process. We identify
open questions and opportunities for further research.

2 An Overview of State Abstraction for RL

We consider RL in sequential decision-making problems, which can be de�ned
as a Markov decision process (MDP) [64]: ⟨S,A, T,R, γ⟩, where S is a set of
states s ∈ S, A a set of actions a ∈ A, T a transition function T (s′|s, a) =
Pr(s′|s, a), R a reward function R(s, a) which gives the reward received when
the agent executes action a in state s, and γ the discount factor (0 ≤ γ < 1). For
realistic problems, the state space of the MDP representation is often too large
to tackle directly. One way to reduce the size is to use compact representations
such as state abstractions. Section 2.1 characterizes di�erent state abstractions
methods and brie�y describes some of their properties. Section 2.2 describes how
abstraction in an MDP can be viewed as a POMDP and the resulting challenge.

2.1 Characterization of Abstractions

State abstraction can be used to reduce the problem size by clustering states into
abstract states. This clustering can be de�ned by using an abstraction function
ϕ, which maps (or aggregates) ground states s to abstract states s̄, where the
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bar notation denotes objects in the abstract space. Here we consider a discrete
state space and write this mapping as ϕ(s) = s̄, such that the abstract state
space can be written as S̄ = {ϕ(s) | s ∈ S}. The agent then uses the abstract
states s̄ and the rewards for learning transitions and rewards over the abstract
state space. State abstraction can result in an abstract state space that is much
smaller than the original state space, |S̄| ≪ |S|, which can make learning easier.

In the planning setting, where we have access to the model of a problem,
many di�erent abstraction functions have been considered [2, 44]. Abstractions
group states based on speci�c criteria of the state or state-action pairs. An
example is the (stochastic) bisimulation [21], also known as model-irrelevance
abstraction [44]. In this abstraction, states are only grouped if their reward and
transition functions in the abstract space are the same, i.e., ϕ(s1) = ϕ(s2) i�

∀a∈A R(s1, a) = R(s2, a), (1)

and ∀s̄′∈S̄ T (s̄′|s1, a) = T (s̄′|s2, a). (2)

Here T (s̄′|s, a) is the transition to an abstract state s̄′ which is de�ned as

T (s̄′|s, a) :=
∑
s′∈s̄′

T (s′|s, a). (3)

If we have access to the MDP, we can compute a more compact abstract MDP [13]
and �nd a solution for this smaller problem. An important aspect of these ab-
stractions is whether or not (near) optimal policies for the original policy can be
obtained when the policy is learned from the abstract problem. Several results
showing that this is possible have been obtained for multiple forms of abstrac-
tion [44, 2]. These results make abstractions interesting for RL as they show
that it is possible to signi�cantly reduce the problem size while still being able
to obtain (near) optimal policies for the original problem.

To allow for further reduction in the problem size, approximate versions of
abstractions, such as the ϵ-bisimulation, have been considered [2, 44]. In the ap-
proximate versions, the grouping criteria are relaxed. E.g., in the ϵ-bisimulation,
the transition and reward functions for grouped states will be close but not
necessarily the same, i.e., ϕ(s1) = ϕ(s2) i�

∀a∈A |R(s1, a)−R(s2, a)| ≤ ϵ, (4)

and ∀s̄′∈S̄ |T (s̄′|s1, a)− T (s̄′|s2, a)| ≤ ϵ, (5)

where T (s̄′|s, a) is de�ned as in (3). Several other examples of exact and ap-
proximate state abstraction functions can be found in the literature [2, 44]. For
a given MDP, it is possible to build an abstract MDP using ϵ-bisimulation cri-
teria [14]. Recent work has introduced transitive state abstractions, which can
be computed e�ciently [1]. If we have a compact model, the goal is to �nd a
good policy. A potential issue is that if a learned model only approximates the
true model, minor errors can compound when planning for long horizons [73,
81]. Results for planning have shown that for particular approximate state rep-
resentations, such as ϵ-bisimulation, the learned policy can still be approximately
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optimal [2]. There is a similar result for using RL in an abstract MDP [72]. How-
ever, these results assume that we have access to the MDP or an abstract MDP,
which requires the problem to be known, and this is typically not the case in
RL.

2.2 Abstraction in an MDP as a POMDP

In the general case of MBRL in an unknown MDP with an abstraction ϕ, the
situation will be as depicted in Figure 1. Without abstraction, the agent receives
a state s as an observation. With abstraction, the agent instead observes an ab-
stract state s̄ = ϕ(s) through the abstraction function ϕ. In this case, the agent
will no longer know precisely which state it is in, making the environment (a spe-
cial case of) a POMDP [3, 6, 32, 52, 69, 70]. Abstraction can be seen as a special
case of POMDPs because the observation results from perceptual aliasing, i.e.,
multiple states are perceived as the same. Perceptual aliasing may not be a prob-
lem when the resulting problem behaves as an MDP, as for a bisimulation [21,
45], but this is often not the case [1, 57, 70].

To formalize the combination of abstraction and RL in an MDP as a special
case of a POMDP, we �rst give the general de�nition of an in�nite horizon
POMDP [34], which can be described by the tuple ⟨S,A, T,R,Ω,O, γ⟩, where
S,A, T,R, and γ are the same as in the MDP. The Ω is a �nite set of observations
o ∈ Ω that an agent can receive, and O is an observation function O(o|a, s′) =
Pr(o|a, s′) that gives the probability of receiving an observation o after taking
an action a and ending in state s′. Now, when an RL agent acts in an MDP
but receives observations through ϕ, the uncertainty is only due to perceptual
aliasing, which means that the observation is a deterministic function of the state:
O(o|a, s′) = Pr(o = ϕ(s′)|a, s′) = Pr(o = ϕ(s′)|s′). For deterministic functions
ϕ, this is 1 i� o = ϕ(s′). The abstraction function ϕ has taken the role of the
observation function O, with the observation space being S̄.

Since we can view the combination of abstraction and RL in an MDP as
a special case of a POMDP, RL methods for POMDPs could be used to �nd
a solution. A common approach to �nding solutions in POMDPs is through
Bayesian RL, for which the Bayes-Adaptive POMDP (BA-POMDP) provides
a framework [65]. Extensions of Bayesian RL for POMDPs are covered in the
survey of Ghavamzadeh et al. [20]. In Deep RL, using recurrent neural networks is
one way in which partial observability has been addressed [30, 78]. Speci�c focus
has been on using variational inference methods [29, 75] and belief tracking [35,
47, 78]. However, these POMDP approaches are often general solutions for any
POMDP, and they are not necessarily optimal for the special case of the POMDP
induced by abstraction.

Instead of applying POMDP solution methods, it can be tempting to treat
the resulting problem as a Markov problem and try to �nd a solution in this
way. For instance, this could be tempting when the abstraction clusters together
states with similar transition and reward functions in the abstract space, such as
with a ϵ-bisimulation abstraction. However, it has been observed that treating
this problem as a Markov process can lead to policies that are far from optimal,
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and there could be no guarantee of �nding an optimal solution [1, 57, 70]. In
general, non-stationarity of the collected data, due to changing behavior of the
policy, has been shown to lead to worse performance in Deep RL [28], and non-
stationarity due to perceptual aliasing can lead to similar problems when not
addressed. Therefore, to �nd good solutions, methods that combine RL and
abstraction should take into account perceptual aliasing.

3 Utilizing Given Abstraction Functions

This section presents an overview of the literature that utilizes an abstraction
function for MBRL. First, Section 3.1 discusses the relation between abstract
MDPs and Robust MDPs (RMDPs) and how solution methods for RMDP can
allow for obtaining better policies when using an abstract learned model. Sec-
tion 3.2 considers the RL setting where we do not have such a model, but we
are given some abstraction function ϕ and see how abstraction can be leveraged
to improve performance. Section 3.3 deals with the setting where we are given
a set of abstractions and have to learn which one leads to optimal performance.
Afterward, Section 4 deals with the setting where we do not have an abstraction
function ϕ and have to learn one online.

3.1 Robust Optimization

The RMDP [80], and the related Bounded Parameter MDP (BPMDP) [22], ex-
tend the MDP de�nition by allowing for uncertainty in the transition and reward
functions, as quanti�ed by intervals. This uncertainty is generally motivated by
not having enough data to be sure about the transition functions but still being
able to give some con�dence intervals. Another motivation is inherent uncer-
tainty, for instance caused by having a ϵ-bisimulation, where the uncertainty
intervals are ϵ wide. If we learn an ϵ-bisimulation model and can estimate ϵ,
we could apply solution methods for RMDP, this makes solution methods for
RMDP interesting for RL with abstraction.

To solve problems with inherent uncertainty, the RMDP includes an addi-
tional set of outcomes B. The transition probabilities and reward function are
a function of both a ∈ A and b ∈ B. From a game-theoretic perspective, B can
be seen as the actions of the adversary [61], which can be state-dependent and
decide over the distribution of the transition and reward function from within
the speci�ed intervals. The solution to an RMDP also includes the policy of
the adversary. For general uncertainty sets for B, it has been shown that the
problem of �nding an optimal robust policy is strongly NP-hard [80]. In order
to �nd solutions in polynomial time, two main uncertainty sets for B have been
considered: s-rectangular and s,a-rectangular sets [61, 80]. In the �rst case, the
adversary can independently choose an outcome for each state s. In the second
case, the adversary can choose an outcome for each state s and action a inde-
pendently. Recent work has also given results when the uncertainty sets are less
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strict [23, 51]. Taking into account the uncertainty with robust optimization can
lead to better policies for the real environment [46, 80].

There has also been some work that combines abstraction with RMDP [46,
61]. The RAAM algorithm [61] receives an abstraction function and an MDP as
input. It �rst constructs an RMDP and uses this to compute an approximately
optimal policy for the original MDP. It is shown that this can be bene�cial in
the limit; bounds on the performance are given that are similar to the bounds
for ϵ-bisimulation abstractions in planning [2]. The RAAM approach was later
extended by Lim and Autef [46], who use a kernel-based approach, of which state
abstraction can be seen as a special case.

The work in this section shows that uncertainty about the transition and
reward functions can be dealt with in a principled way, given some uncertainty
intervals. While some work connects this work to abstraction, it only focuses on
results in the limit.

3.2 Leveraging an Abstraction Function

Often in RL, the environment will be unknown, but sometimes we have access
abstraction function ϕ. This ϕ could, for instance, come from a domain expert
or result from the discretization of a continuous problem. With ϕ, one could
try to learn an abstract model, which is typically done by collecting data and
then constructing a maximum likelihood model for the transition and reward
functions in the abstract space. If we learn a correct abstract model and �nd
the optimal policy for this problem, this solution can be near-optimal in the
true MDP, depending on the abstraction used [2]. Learning in this way could
be more sample-e�cient than learning a model of the full MDP because the
abstract space is smaller than the original state space.

One di�culty in this setting is learning a correct abstract model in the �rst
place. In RL, samples can usually be considered independent, and this is used
to show that an accurate model can be learned. In the combination of RL and
abstraction, samples can no longer be considered independent due to perceptual
aliasing [27, 69, 70]. In order to give sample e�ciency results for RL plus abstrac-
tion, some work assumes that the collected samples are independent [17, 60]. The
work by Paduraru et al. [60] assumes that they receive a data set with indepen-
dent and identically distributed (i.i.d.) samples and show a trade-o� between the
quality of the abstraction and the quality of the transition model. The quality of
the abstraction is measured in terms of the ϵ of ϵ-bisimulation. A larger ϵ means
a coarser abstraction and a larger error. The second error relates to the number
of samples we can get for a state-action pair, where a coarser abstraction gives
more samples per state-action pair and a lower error. Like the work by Paduraru
et al. [60], other work has also shown that the error of the agent can be decom-
posed into multiple components, which are based on the asymptotic bias of the
representation and over�tting due to limited data (variance) [17, 67]. This bias-
variance trade-o� indicates that using abstractions can be especially bene�cial
when the available data is limited while being less bene�cial when much data is
available, which has been illustrated in experiments [17].
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The assumption that the generated data consists of independent samples does
not hold in general. Another way to show that we can learn an accurate abstract
model is by looking at convergence in the limit. The convergence to an accurate
estimation of the abstract model is possible under several conditions, e.g., when
the policy is �xed or when the abstraction is a bisimulation [27, 69]. Having to
use a �xed policy can be seen as a downside because a changing policy that
explores helps to learn e�ciently [71]. Another downside is that, in the limit,
using the full model will be better than using an abstract model since only the
error introduced by the bias remains, which is zero for the full model.

The work by Starre et al. [70] has recently shown that an accurate abstract
model can still be learned by applying martingale theory [11]. They give the
�rst �nite-sample performance analysis for model-based RL plus abstraction by
extending the results of an existing algorithm (R-MAX [9]) with the use of an
ϵ-bisimulation abstraction.

This section shows that abstractions can lead to better performance with
fewer data, trading it o� with less accuracy when much data is available. For
these methods to work, it is required to already have a good abstraction function,
which can be challenging.

3.3 Abstraction Selection

While the work in the previous section mainly focused on the case where we have
one particular abstraction function, there is also a considerable amount that has
focused on state representation selection, where the agent is provided with a set
of state representations (or abstraction functions). It is usually assumed that a
domain expert provides these representations, and the goal is to select the best
representation, often in terms of regret.

Most of this work focuses on �nding representations that make the prob-
lem Markov instead of focusing on �nding good approximate abstractions. In
order to deal with perceptual aliasing, most work assumes that the provided
set contains a Markov model of the environment [25, 48, 49, 54, 59]. In order to
�nd a correct representation in the online setting, these algorithms eliminate
non-Markov models by comparing the obtained rewards during execution with a
threshold based on a Markov model. The work by Lattimore et al. [41] considers
a similar setting where the dynamics of the true environment depend arbitrarily
on the history of actions, rewards, and observations. Instead of getting a set of
representation functions, they assume access to a given set of models, one of
which is a correct model of the true environment. In this way, they can compare
the calculated expected reward for the given model with the rewards obtained
during the process and eliminate the unlikely models.

Other work does not assume that a Markov representation is available [31,
58], these both use an ϵ-bisimulation type abstraction. The work of Ortner et
al. [58] builds on the work of Maillard et al. [48] by removing the necessity of
having a Markov representation in the set of available representations. However,
the analysis is invalid since there is an issue in the proof on which they build [18].
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They also do not take into perceptual aliasing since they use a concentration in-
equality that requires i.i.d. samples. The work by Jiang et al. [31] deals with
perceptual aliasing by explicitly assuming in their analysis that a data set con-
sisting of samples that are i.i.d. is available. They give a performance bound for
policies based on a learned abstract model and split the error into two compo-
nents, similar to some of the work mentioned in Section 3.2 [17, 60]. These two
components are used to create an algorithm that decides which representation
should be used based on the available data.

The methods in this section show that we can learn to select a correct
(Markov) representation, given an initial set of representations. Most of these
methods are not very scalable, as they are tabular, and �nding a good (Markov)
representation/abstraction in larger problems can be challenging.

4 Online Abstraction Learning

The previously discussed works have mostly assumed that an abstract represen-
tation (or a set thereof) is readily available. However, this is not always possible.
In this section, we consider the situation where such an abstraction is unavailable
and has to be learned �rst while simultaneously learning about the environment.
Two early studies on this topic provided promising experimental results [40, 52].
Section 4.1 covers tabular approaches, which have mostly been more theoretical,
and Section 4.2 covers deep learned representations focused on scaling up.

4.1 Tabular Approaches

The combination of MBRL and abstraction has also been approached theoreti-
cally. The work by Bernstein and Shimkin [7] gives results for online abstraction
when the transition functions are deterministic. The work by Ortner [57] ex-
plores the more general case of stochastic transition functions when trying to
learn a ϵ-bisimulation. To learn a ϵ-bisimulation they maintain an interval on
the estimation of the transition and reward functions for each state-action pair,
which is used to create a BPMDP [22]. Subsequently, the BPMDP is abstracted
by clustering the states that overlap in the transition and reward function for
all actions, but only if they have a similar amount of samples. They give an
example to show that clustered states must have a similar amount of samples
for all the actions to obtain good performance. This is an interesting observation
since it points out a problem that should be taken into account when learning
an abstraction in combination with MBRL. A downside of the method is that it
focuses on the computational bene�t abstraction can bring; from the perspective
of sample e�ciency, a method that utilizes abstraction to learn more e�ciently
is desirable.

In the Bayesian RL setting, the work by Mandel et al. [50] proposes an
algorithm that does online clustering and exploration. The clustering is done over
state-action pairs rather than only over states. State-action abstractions allow for
a broader class of abstractions since state abstractions can be considered a subset
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of state-action abstractions while potentially still being optimality preserving.
This gives additional power in doing the abstraction since, in some domains,
there could be no similar states while similar state-action pairs exist. State-
action pairs are grouped when the relative outcomes are likely to be the same.
Relative outcomes are similar to observations. Given a relative outcome, the
agent knows both the transition and reward. However, it needs to learn the
distribution over relative outcomes for each state.

Work in block MDPs, or MDPs with rich observations, is a related approach
where the assumption is that each state can generate multiple di�erent observa-
tions [5, 15, 24, 39, 82]. Instead of having multiple states that generate the same
observation (due to the abstraction function), each type of observation is only
generated by one state, but each state can generate multiple observations. This
is similar to representation learning, speci�cally to learning a bisimulation [5,
15, 82]. A common approach in this setting is to use spectral methods [5, 24, 39].
For these to work, it is necessary to be able to uniquely identify states from the
observation function. While this is possible for model-irrelevance abstractions,
this is generally not possible in the abstraction setting.

The focus of tabular approaches has been on block MDPs, which can lead
to a considerable reduction in the state space in suitable problems. However,
this does require the problem to have many states with the same behavior in an
abstract space, i.e., there needs to be a bisimulation abstraction. This restricts
the number of problems to which these methods can be applied.

4.2 Deep Learned Representations

There have also been several Deep RL approaches that focus on learning compact
state representations, which can be viewed as an instance of state abstraction.
For instance, the approaches by Sermanet et al. [68], Thomas et al. [74], Biza
and Platt [8], François-Lavet et al. [16], Van der Pol et al. [63], Schrittwieser et
al. [66], Allen et al. [3], and Ye et al. [81]. One crucial notion for abstraction in
deep RL is a collapse of the latent representation [3, 12, 16, 63]. When considering
only the transition function, it would be optimal to cluster all states into exactly
one abstract state. It has been shown that losses that require both the transition
and reward function of grouped states to be the same can avoid this collapse [19],
making it essential to group states based on both transitions and rewards.

Recently, multiple contrastive methods have been used to learn compact rep-
resentations for predicting the next state [4, 37, 56]. Their representation learning
tries to maximize the mutual information between the present and future sam-
ples. To train the network, they use positive and negative next-state samples,
where the positive samples are transitions that occurred, while the negative
samples are transitions that did not occur. These negative samples should help
prevent the potential collapse of the state representation. Their methods do not
use the model to plan the policy but instead use actor-critic and policy optimiza-
tion methods on top of the representation. The proposed representation learning
method was able to help improve the performance of these methods.
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Other work has focused on learning deep representations for robotics [12,
33, 43]. This has investigated adding several types of robotic priors to bias the
representation learning, which are added to the network as an auxiliary loss [30].
These priors encode knowledge about physics, e.g., that changes in the state are
often gradual rather than abrupt. The state-representation objectives were in-
strumental in generalizing, as they signi�cantly improved the results in the test
domain. This shows that learning a compact model of the environment can be
bene�cial even if the model itself is not directly used for planning. Other meth-
ods for robotics focus on �nding compact linear representations of a problem
and �nding a policy for this smaller model [76, 79, 83]. This has shown promis-
ing results for robotics, where many of the essential state features could be
approximately linear.

Most of the work in this section focused on learning exact abstractions. They
try to reduce the problem so that the resulting latent representation still makes
the problem an MDP. This can be di�cult to ensure, especially in Deep RL,
so it is likely that the resulting representation is an approximate abstraction.
Since most work does not acknowledge this, they do not consider the resulting
perceptual aliasing, and algorithms can experience the problem illustrated by
[57]: when states with a di�erent number of visitations are grouped, this can
lead to suboptimal policies. When this is not taken into account, this can lead
an agent to be stuck in a suboptimal loop.

5 Discussion and Conclusion

We summarize our overview in Table 1, which compares the approaches on the
type of environment, whether or not a model is given, how an abstraction ϕ is
obtained, what kind of abstraction is used, available theoretical support, scala-
bility, and how they deal with perceptual aliasing.

The methods in Sections 2 and 3 generally have strong theoretical support
(V) in the form of bounded loss (e.g., [2, 80]), �nite-sample guarantees (e.g., [60,
70]), or regret bounds (e.g., [49]). Most of these methods are not (X) scalable
due to being tabular or only somewhat scalable (∼) due to needing to be given a
model, which in many cases is not possible. In most of these works, the problem
of perceptual aliasing does not arise, either because of assumptions on data
gathering or because an MDP, or MDP representation, is provided. Without
assuming that samples are independent, Starre et al. [70] show that �nite-sample
bounds for MBRL in an MDP with an ϵ-bisimulation can be obtained. Extending
these results to other types of abstractions is still an open question.

In Section 3.2, we saw a bias-variance trade-o� with abstractions [17, 31,
60, 67]. Because of this trade-o�, an interesting direction would be to combine

learning multiple representations with abstraction selection to decide which rep-

resentation to use at which time.
As discussed in Section 3.1, results for optimization under uncertainty could

make it interesting to maintain con�dence intervals for the learned models and
use robust optimization to �nd policies. Since the model will generally not be
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completely accurate during learning, robust optimization could improve perfor-
mance [46]. Tabular work discussed in Sections 3.1 and 4.1 investigated this
idea [57, 61], scaling such approaches to larger problems is an interesting future

direction.

Most of the focus has been on abstractions related to bisimulation. As touched
upon in Section 4.1, abstractions that aggregate state-action pairs can be more
potent than state abstractions [50]. An open question is what are the best types

of abstraction to use? Non-deterministic abstraction [69], temporal abstraction,
or combinations of abstractions could be powerful but have not been as well
studied [38].

In work by Schrittwieser et al. [66], there is some indication that, in online
planning, using a coarser learned model rather than the true model can be
bene�cial. With limited planning time, planning with a compact learned model
outperformed planning with the true model of the environment. There could

be a trade-o� for learning between the coarseness of the model and the allotted

planning time; a coarser model could perform better with a shorter planning time

but worse with a longer planning time.

The methods in Section 4.2 focus on learning abstractions that result in a
Markov representation, e.g., bisimulation abstractions. However, during learning,
when the abstraction is likely not a Markov representation, perceptual aliasing

occurs. How can the resulting non-stationarity be addressed? In Section 4.1, we
saw that the tabular work by Ortner [57] deals with perceptual aliasing, but to
do so, it maintains visitation counts for all state-action pairs. Methods that can
maintain counts in an approximate way, such as pseudo-counts [72], could enable
a scalable version of the approach by Ortner [57]. Another approach to deal with
perceptual aliasing in a more sample-e�cient way could be using an algorithm
such as ITER [28], which tackles the general non-stationarity of the data distri-
bution caused by the RL algorithm. The idea of the algorithm is to frequently
transfer the knowledge of the trained network to a new network and then use
the new network for training. The knowledge is transferred through samples that
are obtained from the collected data set as if they had been generated with the
�nal policy of the trained network.

In multi-agent RL, the challenge is to behave optimally in the presence of
other agents whose behavior may be non-stationary [26]. Approaches for the

multi-agent RL problem that address non-stationarity could be insightful for the

combination of RL and abstraction. One approach that could be relevant is trying
to capture the non-stationarity that is the result of perceptual aliasing, which
could, for instance, be done by using in�uence-based abstraction [55]. In�uence-
based abstraction aims to abstract a problem into a smaller local problem with
a predictor that quanti�es the in�uence of variables outside the local problem
on the local problem. Given an accurate predictor, this results in a Markov
problem. Such a predictor could capture the non-stationarity due to perceptual
aliasing and improve performance. In�uence-based abstraction has been applied
together with Deep model-free RL, using a recurrent neural network to capture
the in�uence, which has shown promising results [10].
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Other approaches in multi-agent RL do not deal with the non-stationarity
but simply ignore it by abstracting away the internal states of the other agents.
Since this can be seen as a special case of the non-stationarity in the combination
of RL and abstraction, insights from this combination on how to deal with non-
stationarity as a result of perceptual aliasing could provide interesting directions
for these multi-agent RL approaches.
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