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Abstract

Many methods for Model-based Reinforcement learning (MBRL) in Markov decision pro-
cesses (MDPs) provide guarantees for both the accuracy of the model they can deliver and
the learning efficiency. At the same time, state abstraction techniques allow for a reduc-
tion of the size of an MDP while maintaining a bounded loss with respect to the original
problem. Therefore, it may come as a surprise that no such guarantees are available when
combining both techniques, i.e., where MBRL merely observes abstract states. Our theoret-
ical analysis shows that abstraction can introduce a dependence between samples collected
online (e.g., in the real world). That means that, without taking this dependence into
account, results for MBRL do not directly extend to this setting. Our result shows that
we can use concentration inequalities for martingales to overcome this problem. This re-
sult makes it possible to extend the guarantees of existing MBRL algorithms to the setting
with abstraction. We illustrate this by combining R-MAX, a prototypical MBRL algorithm,
with abstraction, thus producing the first performance guarantees for model-based ‘RL from
Abstracted Observations’: model-based reinforcement learning with an abstract model.

1 Introduction

Tabular Model-based Reinforcement Learning (MBRL) methods provide guarantees that show they can
learn efficiently in Markov decision processs (MDPs) (Brafman & Tennenholtz, 2002; Strehl & Littman,
2008; Jaksch et al., 2010; Fruit et al., 2018; Talebi & Maillard, 2018; Zhang & Ji, 2019; Bourel et al.,
2020). They do this by finding solutions to a fundamental problem for Reinforcement Learning (RL), the
exploration-exploitation dilemma: when to take actions to obtain more information (explore) and when to
take actions that maximize reward based on the current knowledge (exploit). However, MDPs can be huge,
which can be problematic for tabular methods. One way to deal with large problems is by using abstractions,
such as the mainstream state abstractions (Li, 2009; Abel et al., 2016). State abstractions reduce the size
of the problem by aggregating together states according to different criteria, depending on the specific type
of abstraction. We can view state abstraction as a special case of function approximation, where every state
maps to its abstract state (Mahadevan, 2010), and we can roughly divide them into exact and approximate
abstractions (Li, 2009; Abel et al., 2016).
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Figure 1: RL from Abstracted Observations,
the agent receives the abstract state s̄ = ϕ(s)
as an observation instead of the state s. Image
based on Abel et al. (2018).

Approximate abstractions relax the criteria of exact ab-
stractions, and therefore allow for a larger reduction in
the state space. Typically, this approximation leads to a
trade-off between performance and the amount of required
data (Paduraru et al., 2008; Jiang et al., 2015). In this pa-
per, we will assume the use of abstraction as a given, e.g.,
because the complete state space is too large to deal with.
Nevertheless, we explore the trade-off in Section 4, where
we compare the performance of the prototypical R-MAX al-
gorithm (Brafman & Tennenholtz, 2002) with and without
abstraction.

In our setting, the agent acts in an MDP that returns states s, but instead of observing the true state
s, the agent only observes abstract states ϕ(s) (see Figure 1). This setting, which has been considered
before (Ortner et al., 2014a; Abel et al., 2018),1 is what we call RL from Abstracted Observations (RLAO).
Surprisingly, there are relatively few results for RLAO, even though many results for the planning setting
are available (Li et al., 2006; Abel et al., 2016). The main difference between these two settings is that in
planning with abstraction the resulting problem can still be considered an MDP, but in RLAO, while the
underlying problem is still an MDP, the observed problem is not.

The observation that the observed problem is not an MDP can be understood when we realize that RLAO
corresponds to RL in a Partially Observable MDP (POMDP) (Kaelbling et al., 1998), as previously described
(Bai et al., 2016). Specifically, the abstraction function serves as an observation function. Rather than
observing its true state s, the agent observes the abstract state ϕ(s) and its policy chooses an action based
on this abstract state. It is well known that policies for POMDPs that only base their action on the last
observation can be arbitrarily bad (Singh et al., 1994). Fortunately, there is also good news, as this worst-
case does not apply when ϕ is an exact model similarity abstraction 2 (Li, 2009), because the resulting
problem can be considered an MDP; this abstraction maps states to the same abstract state only when their
reward and transition functions in the abstract space are the same (Li et al., 2006). We focus on the related
approximate model similarity abstraction (Abel et al., 2016), which maps states to the same abstract state
only when their reward and transition functions in the abstract space are close. Intuitively, because of its
connection to the exact model similarity, one could expect that for this abstraction the worst-case also does
not apply. However, as we discuss in detail in Section 2.2, MBRL methods typically use results that rely on
the assumption of independent and identically distributed (i.i.d.) samples to prove efficient learning (Strehl
& Littman, 2008; Jaksch et al., 2010; Fruit et al., 2018; Bourel et al., 2020). This is not appropriate in
RLAO: with abstraction, the transitions between abstract states need not be Markov, and the samples may
depend on the history.

We analyze collecting samples in RLAO and prove that, with abstraction, samples are not guaranteed to
be independent. This means that most guarantees of existing MBRL methods do not hold in the RLAO
setting. 3 The primary technical result in this work shows that we can still learn an accurate model in RLAO
by replacing concentration inequalities that rely on independent samples with a well-known concentration
inequality for martingales (Azuma, 1967). This result allows us to extend the guarantees of MBRL methods
to RLAO. We illustrate such an extension for the prototypical R-MAX algorithm (Brafman & Tennenholtz,
2002), thus producing the first performance guarantees for model-based methods in RLAO. These results
are important for the often adopted state abstraction framework, as they allow us to conclude under what
cases performance guarantees in MBRL can be transferred to settings with state abstraction.

1We refer to Section 5 for a comparison with the related work.
2Also known as stochastic bisimulation (Givan et al., 2003).
3Of course, certain guarantees on the combination of abstraction and RL are known. However, in most related work in

abstraction settings (e.g., abstraction selection), the complication of samples not being independent does not occur due to
particular assumptions (Paduraru et al., 2008; Hallak et al., 2013; Maillard et al., 2013; Majeed & Hutter, 2018; Ortner et al.,
2019; Du et al., 2019). Section 5 gives details for individual papers.
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2 Background

Section 3 will cover the combination of MBRL and abstraction in MDPs, in this section we introduce the
required background.

2.1 Model-Based RL

As is typical for RL problems, we assume the environment the agent is acting in can be represented by an
infinite horizon MDP M ≜ ⟨S, A, T, R, γ⟩ (Puterman, 2014). Here S is a finite set of states s ∈ S, A a finite
set of actions a ∈ A, T a transition function T (s′|s, a) = Pr(s′|s, a), R a reward function R(s, a) which gives
the reward received when the agent executes action a in state s, and γ is a discount factor with 0 ≤ γ ≤ 1
that determines the importance of future rewards. We use Rmax to denote the maximum reward the agent
can obtain in one step. The agent’s goal is to find an optimal policy π∗ : S → A, i.e., a policy that maximizes
the expectation of the cumulative reward in the MDP. V π(s) denotes the expected value of the cumulative
reward under policy π starting from state s. Similarly, Qπ(s, a) denotes the expected value of the cumulative
reward when first taking action a from state s and then following policy π afterward.

MBRL methods learn a model from the experience that the agent gains by taking actions and observing the
rewards it gets and the states it reaches. For a fixed state-action pair (s, a), we let τ1, τ2, · · · , τN(s,a) be the
first N(s, a) time steps at which the agent took action a in state s. The first N(s, a) states s′ that the agent
reached after taking action a in state s are stored as the sequence Ys,a ≜ (s′(τ1+1), s′(τ2+1), · · · , s′(τN(s,a)+1)).
We use Y to refer to the collection of all Ys,a. Typically, in MBRL, the obtained experience is used to
construct the empirical model TY (Brafman & Tennenholtz, 2002; Strehl & Littman, 2008; Jaksch et al.,
2010; Fruit et al., 2018; Talebi & Maillard, 2018; Zhang & Ji, 2019; Bourel et al., 2020). This model is
constructed simply by counting how often the agent reached a particular next state s′ and normalizing the
obtained quantity by the total count:

∀s′ ∈ S : TY (s′|s, a) ≜ 1
N(s, a)

N(s,a)∑
i=1

1{Y (τi+1)
s,a = s′}. (1)

Here 1{·} denotes the indicator function of the specified event, i.e., 1{Y
(τi+1)

s,a = s′} is 1 if Y
(τi+1)

s,a = s′ and
0 otherwise.

2.2 Guarantees for MBRL

The quality of the empirical model TY is crucial for performance guarantees, irrespective of the form of
the guarantee, e.g., PAC-MDP (Strehl & Littman, 2008) or regret (Jaksch et al., 2010). The quality of the
empirical model is high when the distance between TY (·|s, a) and the ground truth T (·|s, a) is small. We
can, for instance, measure this distance with the L1 norm, defined as follows:

||TY (·|s, a) − T (·|s, a)||1 ≜
∑
s′∈S

|TY (s′|s, a) − T (s′|s, a)|. (2)

Concentration inequalities are often used to guarantee that, with enough samples, this distance will be small,
e.g.:

Lemma 1 (L1 inequality (Weissman et al., 2003)). Let Ys,a = Y
(1)

s,a , Y
(2)

s,a , · · · , Y
(N(s,a))

s,a be i.i.d. random
variables distributed according to T (·|s, a). Then, for all ϵ > 0,

Pr(||TY (·|s, a) − T (·|s, a)||1 ≥ ϵ) ≤ (2|S| − 2)e− 1
2 N(s,a)ϵ2

. (3)

These inequalities typically make use of the fact that samples are i.i.d. It is not necessarily evident that
these bounds can be applied without problem. Let us explore the transitions from a particular state, say
state 42, in a Markov chain (we can ignore actions for this argument). Let k and l denote the time steps of
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two different visits to state 42. Without abstraction, the conditional distributions from which next states
are sampled are identical. So the question now is if these are independent. That is, is it the case that:

P (Sk+1, Sl+1|Sk = 42, Sl = 42) = P (Sk+1|Sk = 42) ∗ P (Sl+1|Sl = 42)? (4)

We have that

P (Sk+1, Sl+1|Sk = 42, Sl = 42) = P (Sk+1|Sk = 42, Sl = 42)P (Sl+1|Sk = 42, Sk + 1, Sl = 42) (5)
= P (Sk+1|Sk = 42, Sl = 42)P (Sl+1|Sl = 42) (due to the Markov property)

(6)

So the question is if P (Sk+1|Sk = 42, Sl = 42) = P (Sk+1|Sk = 42)? In general, this is not the case, since
the information that Sl = 42 gives information about what Sk+1 was.

However, as shown for instance by Strehl & Littman (2008), concentration inequalities for i.i.d. samples, such
as Hoeffding’s Inequality, can still be used as an upper bound in this case, because of the Markov property
and the identical distributions of the samples. In this way, MBRL can upper bound the probability that the
empirical model TY (·|s, a) will be far away (≥ ϵ) from the actual model T (·|s, a). When the empirical model
is accurate, a policy based on this model leads to near-optimal performance in the MDP M (Brafman &
Tennenholtz, 2002; Strehl & Littman, 2008; Jaksch et al., 2010; Bourel et al., 2020).

2.3 State Abstraction for Known Models

We can formulate state abstraction as a mapping from states to abstract states (Li et al., 2006). This
mapping is done with an abstraction function ϕ, a surjective function that maps from states s ∈ S to
abstract states s̄ ∈ S̄: ϕ(s) : S → S̄. We use the ¯ notation to refer to the abstract space and define S̄ as
S̄ = {ϕ(s)|s ∈ S}. We slightly overload the definition of s̄ to be able to write s ∈ s̄. In this case, s̄ is the set
of states that map to s̄, i.e., s̄ = {s ∈ S | ϕ(s) = s̄}. This form of state abstraction is general, and clusters
states with different dynamics into abstract states. We assume that the state abstraction deterministically
maps states to an abstract state. Since each state maps to precisely one abstract state and multiple states
can map to the same abstract state, the abstract state space is typically (much) smaller than the original
state space, |S̄| ≤ |S|.

We focus on a type of abstraction approximate model similarity abstraction (Abel et al., 2016), also known
as approximate stochastic bisimulation (Dean et al., 1997; Givan et al., 2003). In this abstraction, two states
can map to the same abstract state only if their behavior is similar in the abstract space, i.e., when the
reward function and the transitions to abstract states are close. We can determine the transition probability
to an abstract state T (s̄′|s, a) as:

T (s̄′|s, a) =
∑
s′∈s̄′

T (s′|s, a). (7)

Then, we can use equation 7 to define approximate model similarity abstraction:
Definition 1. An approximate model similarity abstraction, ϕmodel,ηR,ηT

, for fixed ηR, ηT , satisfies

ϕmodel,η(s1) = ϕmodel,η(s2) =⇒ ∀a ∈ A : |R(s1, a) − R(s2, a)| ≤ ηR,

∀s̄′ ∈ S̄, a ∈ A : |T (s̄′|s1, a) − T (s̄′|s2, a)| ≤ ηT . (8)

From now on, we will refer to ϕmodel,ηR,ηT
as ϕ. We note that this abstraction is still quite generic. It can

cluster together states that have different transition and reward functions.

2.4 Planning With Abstract MDPs

In the planning setting, where the model is known a priori, we can use the abstraction function ϕ to construct
an abstract MDP. An abstract MDP can be helpful because it is smaller, making it easier to find a solution,
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and a solution for the abstract MDP can work well in the original MDP (Li et al., 2006; Abel et al., 2016).
We construct an abstract MDP M̄ω from the model of an MDP M , an abstraction function ϕ, and an
action-specific weighting function ω. 4 The weighting function ω gives a weight to every state-action pair:
∀s ∈ S, a ∈ A : 0 ≤ ω(s, a) ≤ 1. The weights of the state-action pairs associated with an abstract state s̄
sum up to 1:

∑
s′∈ϕ(s) ω(s′, a) = 1. We can use the weighting function to create an abstract transition and

reward function, which are weighted averages of the original transition and reward functions. In this way,
from M , ϕ, and any ω, we can construct an abstract MDP M̄ω:
Definition 2 (Abstract MDP). Given an MDP M , ϕ, and ω, an abstract MDP M̄ω = ⟨S̄, A, T̄ω, R̄ω⟩ is
constructed as: S̄ = {ϕ(s) | s ∈ S}, A = A,

∀s̄ ∈ S̄, a ∈ A : R̄ω(s̄, a) =
∑
s∈s̄

ω(s, a)R(s, a), (9)

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ω(s̄′|s̄, a) =
∑
s∈s̄

∑
s′∈s̄′

ω(s, a)T (s′|s, a). (10)

Note that the abstract MDP M̄ω itself is an MDP. So we can use planning methods for MDPs to find an
optimal policy π̄∗ for M̄ω. A desirable property of the approximate model similarity abstraction is that
we can upper bound the difference between the optimal value V ∗ in M and the value V π̄∗ obtained when
following the policy π̄∗ in M . These bounds exists in different forms (Dearden & Boutilier, 1997; Abel et al.,
2016; Taïga et al., 2018). For completeness, we give these bounds for both the undiscounted finite horizon
and the discounted infinite horizon:
Theorem 1. Let M = ⟨S, A, T, R⟩ be an MDP and M̄ = ⟨S̄, A, T̄ , R̄⟩ an abstract MDP, for some defined
abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a) − Pr(s̄′|s, a)| ≤ ηT (11)
and |R̄(s̄, a) − R(s, a)| ≤ ηR. (12)

Then, for a finite horizon problem with horizon h we have:

V ∗(s) − V π̄∗
(s) ≤ 2hηR + (h + 1)hηT |S̄|Rmax. (13)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s) − V π̄∗
(s) ≤ 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 . (14)

The proof of Theorem 1 is in Appendix A.3. These bounds show that an optimal abstract policy π̄∗ for M̄
can also perform well in the original problem M when the approximate errors ηR and ηT are small. They
hold for any abstract MDP M̄ created from an approximate model similarity abstraction ϕ and any valid
weighting function ω.

3 MBRL From Abstracted Observations

In RLAO, we have an abstraction function ϕ and instead of observing the true state s, the agent observes the
abstract state ϕ(s). In contrast to the planning setting in Section 2.3, here we act in an MDP M of which we
do not know the transition and reward functions. As mentioned in the introduction, there are surprisingly
few results for the RLAO setting (Section 5 discusses special cases people have considered). Specifically,
results of MBRL from Abstracted Observations (MBRLAO) are lacking. Section 3.2 explains why this is by
analyzing how abstraction leads to dependence between samples, which means that the methods for dealing
with Markov transitions, as covered in Section 2.2, no longer suffice. Then, in Section 3.4, we show how
concentration inequalities for martingales can be used to still learn an accurate model in RLAO. To illustrate
how this result can be used to extend the results of MBRL methods to RLAO, we extend the results of the
R-MAX algorithm (Brafman & Tennenholtz, 2002). R-MAX is a well-known and straightforward method
that guarantees sample efficient learning.

4The action-specific weighting function is more general than the typically used weighting function, which is not action-specific
and only depends on the state s (Li et al., 2006). More formally, it is the case where ∀a, a′ ∈ A, s ∈ S : ω(s, a) = ω(s, a′).
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3.1 The General MBRL From Abstracted Observations Approach

In RLAO, the agent collects data for every abstract state-action pair (s̄, a), stored as sequences Ȳs̄,a:

Ȳs̄,a : {s̄′(τ1+1), s̄′(τ2+1), · · · , s̄′(τN(s̄,a)+1)}. (15)

Like in equation 1, we construct an empirical model T̄Y , now looking at the abstract next-states that the
agent reached:

T̄Y (s̄′|s̄, a) ≜ 1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′}. (16)

Suppose we could guarantee that the empirical model T̄Y was equal, or close, to the transition function T̄ω

of an abstract MDP M̄ω constructed from the true MDP with ϕ and a valid ω. In that case, we could
bound the loss in performance due to applying the learned policy π̄∗ to M instead of applying the optimal
policy π∗ (Abel et al., 2016; Taïga et al., 2018). Our main question is: do the finite-sample model learning
guarantees of MBRL algorithms still hold in the RLAO setting?

3.2 Requirements for guarantees for MBRL From Abstracted Observations

In order to give guarantees, we need to show that the empirical model T̄Y is close to the transition model
of an abstract MDP M̄ω. Before defining this transition model of M̄ω, we examine the data collection. In
the online data collection, the agent obtains a sample for Ȳs̄,a when it is in a state s ∈ s̄ and takes action a.
Specifically, the agent obtains the i-th sample Ȳ

(i)
s̄,a = s̄′τ1+1 from state X

(i)
s̄,a = sτi ∈ s̄:

Ȳ
(i)

s̄,a ∼ T (·|X(i)
s̄,a = sτi , a). (17)

Let Xs̄,a = (X(i)
s̄,a)N(s̄,a)

i=1 denote the sequence of states s ∈ s̄ from which the agent took action a. Each state
s gets a weight according to how often it appears in Xs̄,a, which we formalize with the weighting function
ωX :

∀s ∈ s̄, a ∈ A : ωX(s, a) ≜ 1
N(s̄, a)

N(s̄,a)∑
i=1

1{X
(i)
s̄,a = s}. (18)

We use ωX to define T̄ωX
analogous to equation 10:

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ωX
(s̄′|s̄, a) ≜

∑
s∈s̄

ωX(s, a)
∑
s′∈s̄′

T (s′|s, a). (19)

To highlight the close connection between T̄ωX
and T̄Y (build of samples from T (·|X(i)

s̄,a = sτi , a)), we give a
second, but equivalent, 5 definition of T̄ωX

:

∀(s̄, a), s̄′ : T̄ωX
(s̄′|s̄, a) ≜ 1

N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a). (20)

Note that ωX and thus T̄ωX
are not fixed a priori. Instead, like T̄Y , they are empirical quantities that change

at every time step and depend on the policy and the (stochastic) outcomes. Importantly, by its definition,
ωX is a valid ω at every timestep. It is not a problem that ωX and T̄ωX

change over time, as long as the
empirical model T̄Y can be shown to be close to T̄ωX

. For this, we want a concentration inequality to provide
bounds on the deviation of the empirical model T̄Y from T̄ωX

; we refer to this inequality as the abstract L1
inequality, similar in form to equation 3:

P (|T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)|1 ≥ ϵ) ≤ δ, (21)

where T̄Y (·|s̄, a) is defined according to equation 16 and T̄ωX
according to equation 19.

5In the proof of Theorem 2 we show that these two definitions are equivalent.
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3.3 Why the Previous Strategy Fails: Dependent Samples That Are Not Identically Distributed

Suppose we could directly obtain i.i.d. samples from T̄ωX
and base our empirical model T̄Y on the obtained

samples. In that case, we could show that the abstract L1 inequality holds by applying Lemma 1. This lemma
would be applicable because we could obtain a number N(s̄, a) of i.i.d. samples per abstract state-action
pair, distributed according to T̄ωX

(·|s̄, a). However, the samples are not i.i.d. in RLAO: the samples are
neither identically distributed nor independent, and this combination means that previous techniques fail.
We will first cover the distribution of the samples and show that samples not being identically distributed is
not a problem. Then we prove that samples are not guaranteed to be independent. Afterward, Section 3.4
shows that we can still learn when the samples are dependent.

3.3.1 Why We Can Not Use Lemma 1: Dependent Samples.

The samples are not necessarily identically distributed in RLAO since the agent obtains a sample Ȳ (i) when
taking action a from state X

(i)
s̄,a = s ∈ s̄, as in equation 17. If X

(i)
s̄,a ̸= X

(j)
s̄,a, these states can have different

transition distributions. This implies that in general we might not be able to apply Lemma 1, because it
assumes identically distributed random variables. However, different distributions by themselves need not
be a problem; we show that the result also holds when the random variables are not identically distributed:
Lemma 2. Let Xs̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be
independent random variables distributed according to Pr(·|s1, a), · · · , Pr(·|sm, a) (equation 7). Then, for all
ϵ > 0,

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1

2 mϵ2
. (22)

The proof can be found in Appendix B. Therefore, if the samples in RLAO were independent, then we could
apply Lemma 2 to guarantee an accurate model.

Independence. One could be tempted to assume the samples are independent, i.e.,

∀s̄′
1, · · · , s̄′

m ∈ (S̄)m : Pr(Ȳ (1)
s̄,a = s̄′

1, · · · , Ȳ
(m)

s̄,a = s̄′
m) = Pr(Ȳ (1)

s̄,a = s̄′
1) · · · P (Ȳ (m)

s̄,a = s̄′
m). (23)

However, this is not true in general in RLAO:
Observation 1. When collecting samples online using an abstraction function, such samples are not nec-
essarily independent.

Figure 2: Simple MDP, with
only 1 action, and abstrac-
tion. The small circles are states
(1,2,3,4). A, B and C are the ab-
stract states. The arrows show
the transition probabilities, e.g.
P (3|1) = 0.6.

Samples can be dependent when 1) samples are collected online in the
real environment, of which we do not know the transitions, and 2) the
samples are collected for abstract states s̄. Observation 1 can be under-
stood from the perspective that the RLAO problem corresponds to RL
in a POMDP (Bai et al., 2016). The corresponding POMDP uses the
abstraction function as the observation function and the abstract states
as observations. Since the transitions between observations need not be
Markov in POMDPs, the samples from abstract states can depend on
the history. While this observation may be clear from the POMDP per-
spective, work in RLAO regularly assumes (explicitly or implicitly) that
independent samples can somehow be obtained (Paduraru et al., 2008;
Ortner et al., 2014a; Jiang et al., 2015; Ortner et al., 2019). In the follow-
ing counterexample, we rigorously show that samples are not necessarily
independent.

Counterexample. We use the example MDP and abstraction in Fig-
ure 2, where we have four states, three abstract states, and only one
action. Since the example MDP has only one action, we omit the action
from the notation. We examine the transition function of abstract state
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A, T̄Y (·|A) and consider the first two times we transition from A. These two transition samples, s̄′
1 and s̄′

2,
are the first two entries in ȲA. We show that the samples are not independent for at least one combination
of s̄′

1 and s̄′
2.

Let s̄′
1 = s̄′

2 = B, i.e., the first two times we experience a transition from the abstract state A, we end up
in B. We denote the i-th experienced transition from abstract state A as Ȳ

(i)
A . Let state 1 be the starting

state.

We start with the product of the probabilities:

Pr(Ȳ (1)
A = B) Pr(Ȳ (2)

A = B). (24)

We have Pr(Ȳ (1)
A = B) = Pr(B|1) = 0.6 for the first term since state 1 is the starting state. The second

term is more complex since it includes the probability of starting the transition from state 1 and state 2.

We have:

Pr(Ȳ (2)
A = B) =

∑
s̄∈S̄

Pr(Ȳ (2)
A = B|Ȳ (1)

A = s̄) Pr(Ȳ (1)
A = s̄) (25)

= Pr(Ȳ (2)
A = B|Ȳ (1)

A = A) Pr(Ȳ (1)
A = A) + Pr(Ȳ (2)

A = B|Ȳ (1)
A = B) Pr(Ȳ (1)

A = B)

+ Pr(Ȳ (2)
A = B|Ȳ (1)

A = C) Pr(Ȳ (1)
A = C). (26)

= Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) Pr(Ȳ (1)
A = B) + Pr(Ȳ (2)

A = B|Ȳ (1)
A = C) Pr(Ȳ (1)

A = C). (27)

= Pr(Y (2)
A = 3|Ȳ (1)

A = 3) Pr(Y (1)
A = 3) + Pr(Y (2)

A = 3|Y (1)
A = 4) Pr(Y (1)

A = 4) (28)
= 0.6 · 0.6 + 0.4 · 0.4 = 0.52. (29)

For the step from equation 26 to equation 27, Pr(Ȳ (1)
A = A) is 0 because there is no transition from a state

in A to a state in A. Then, from equation 27 to equation 28, we use that both abstract states B and C

consist of exactly 1 state. So, e.g., Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) = Pr(Y (2)
A = 3|Ȳ (1)

A = 3). So, for the product of
the probabilities, we end up with: Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B) = 0.6 · 0.52 = 0.321.

For the joint probability, we have:

Pr(Ȳ (1)
A = B, Ȳ

(2)
A = B) = Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) (30)
= Pr(B|1)(Pr(B|1) Pr(1|B)) (31)
= 0.6 · (0.6 · 1) (32)
= 0.6 · 0.6 (33)
= 0.36. (34)

Here, Pr(Ȳ (2)
A = B|Ȳ (1)

A = B) = Pr(B|1) Pr(1|B) because the first transition ends in state B and we always
transition to state 1 from state B. Hence, Pr(Ȳ (2)

A = B|Ȳ (1)
A = B) = Pr(B|1) Pr(1|B) = 0.6 · 1.

Combining the joint probability and the product of probabilities, we end up with:

0.36 = Pr(Ȳ (1)
A = B, Ȳ

(2)
A = B) ̸= Pr(Ȳ (1)

A = B) Pr(Ȳ (2)
A = B) = 0.6 · 0.52. (35)

Thus, the samples are not independent. Leading us to the second observation.
Observation 2. As independence cannot be guaranteed, Lemmas 1 and 2 cannot be readily applied to show
that the abstract L1 inequality holds.

This claim follows from the fact that Lemmas 1 and 2 both use the assumption of independence in their
proofs. It would still be possible to obtain independent samples if we could, for example, have access to a
simulator of the problem. In that case, it is still possible to give guarantees on the accuracy of the model,
which we show in Appendix E. However, we consider the setting where a simulator is not available.
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3.3.2 Why the Approach by Strehl & Littman (2008) Fails

While the counterexample above is informative as to why Lemmas 1 and 2 cannot be applied, the failure
to apply these lemmas may not come as a surprise: in the end, as shown by Strehl & Littman (2008), more
work is needed. They are able to use these concentration inequalities due to an additional proof that shows
that even though the samples are drawn from a Markov chain, and thus not fully independent, the inequality
still serves as an upper bound. This raises the question whether we could not follow the same approach, and
show that Lemma 1 (or 2) is still an upper bound in the RLAO setting.

It turns out that this is not possible, as that result uses the Markov property and requires each sample to
be identically distributed. Without abstraction, only (s, a) and the next states s′ ∼ P (·|s, a) are considered,
which indeed have the same distribution. In RLAO, the outcomes of multiple states are grouped together
and for a pair (s̄, a) both the state s ∈ s̄ that we reach and the resulting next state s̄′ need to be considered.
Since the distributions s′ ∼ P (·|s1, a) and s′ ∼ P (·|s2, a) of two states s1, s2 ∈ s̄ do not have to be the same,
these samples are not guaranteed to be identically distributed.

3.3.3 Summary: Why Previous Strategies Fail

Summarizing, we have seen that previous strategies fail due to the combination of samples neither being
independent, nor being identically distributed. We showed that if the samples would only be non-identically
distributed (but independent) we could modify the proof of Lemma 1, leading to Lemma 2, that could be
directly used. On the other hand, if the samples were only dependent (but still identically distributed), it
would be possible to follow the strategy of Strehl & Littman (2008). However, given that we are dealing
with the dependent non-identically distributed setting, neither of these previous strategies work, and a new
approach is needed, as we present next.

3.4 Guarantees for Abstract Model Learning Using Martingales

Now we want to give a guarantee in the form of the abstract L1 inequality from equation 21.6 In Section 3.2,
we found this was not possible with concentration inequalities such as Hoeffding’s inequality because the
samples are not guaranteed to be independent. Here we consider a related bound for weakly dependent
samples, the Azuma-Hoeffding inequality. This inequality makes use of the properties of a martingale
difference sequence, which are slightly weaker than independence:
Definition 3 (Martingale difference sequence (Azuma, 1967)). The sequence Z1, Z2, · · · is a martingale
difference sequence if, ∀i, it satisfies the following conditions:

E[Zi|Z1, Z2, · · · , Zi−1] = 0,

|Zi| < ∞.

The properties of the martingale difference sequence can be used to obtain the following concentration
inequality:
Lemma 3 (Azuma-Hoeffding Inequality (Hoeffding, 1963; Azuma, 1967)). If the random variables Z1, Z2, · · ·
form a martingale difference sequence (Def. 3), with |Zi| ≤ b, then

Pr(
n∑

i=1
Zi > ϵ) ≤ e− ϵ2

2b2n . (36)

Our main result, Theorem 2, shows that we can use Lemma 3 to obtain a concentration inequality for the
abstract transition function in RLAO (as in equation 21). Specifically, we show that, with high probability,
the empirical abstract transition function T̄Y will be close to the abstract transition function T̄ωX

:

6We focus on the transition function, for the reward function we make some simplifying assumptions in Section 4. We discuss
in Section 6 how these assumptions can be relaxed and the result extended for the reward function.
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Theorem 2 (Abstract L1 inequality). If an agent has access to a state abstraction function ϕ and uses
this to collect data for any abstract state-action pair (s̄, a) by acting in an MDP M according to a policy π̄,
we have that the following holds with a probability of at least 1 − δ for a fixed value of N(s̄, a):

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ, (37)

where δ = 2|S̄|e− 1
8 N(s̄,a)ϵ2 .

Here we use the definitions of T̄Y (·|s̄, a) (equation 16) and T̄ωX
(·|s̄, a) (equation 19). This theorem shows

that the empirical model constructed by MBRLAO is close to an Abstract MDP M̄ωX
, and here Theorem 1

gives performance loss guarantees. By assuming that M̄ωX
is the results of an approximate model irrelevance

abstraction, we can give end to end guarantees. In simpler words: our result just shows that whatever T̄Y

you might end up with (indeed, regardless of changing policies, etc.), it was generated by some underlying
states X, and the implied T̄ωX

will concentrate on T̄Y .

Note that, unlike in planning with abstract MDPs (Section 2.4), there is no fixed set of weights T̄ωX
that

can be used as ground truth that needs to be estimated. As illustrated in Section 3.3.1, the RLAO setting
corresponds to a POMDP, which means that depending on the history there would be a different distribution
over the states (and thus different weights) in each abstract state (called ’the belief’ in a POMDP). Instead,
both T̄ωX

and T̄Y change over time. We show in the proof of Theorem 2 (in Appendix C) that T̄Y will
concentrate on T̄ωX

as they are intimately connected. This is possible because Lemma 3 can be applied as
long as the Zi form a martingale difference sequence, with |Zi| ≤ b. In the proof, we define a suitable Zi

and show that T̄Y will thus concentrate on T̄ωX
, with high probability.

4 An Illustration: R-MAX From Abstracted Observations

Here we give an illustration of how we can use Theorem 2 to provide guarantees for MBRL methods in RLAO
with an approximate model similarity abstraction. We illustrate this using the R-MAX algorithm (Brafman
& Tennenholtz, 2002). We start with a short description of R-MAX and how it operates with abstraction.

The R-MAX algorithm maintains a model of the environment. It uses this model to compute a policy
periodically and then follows this policy for several steps. Initially, all the state-action pairs are unknown
and the algorithm optimistically initializes their reward and transition functions: R(s, a) = Rmax (the
maximum reward), T (s|s, a) = 1, and ∀s′ ̸= s : T (s′|s, a) = 0. This initialization means that, in the model
the algorithm maintains, these unknown (s, a) lead to the maximum reward, hence the name R-MAX. A
state-action pair’s transition and reward function are only updated once they have been visited sufficiently
often, at which point the state-action pair is considered known. Together, this ensures that the algorithm
explores sufficiently. During execution, the algorithm operates in episodes of n-steps. At the start of every
episode it calculates an optimal n-step policy and follows this for n timesteps, or until a state-action pair
becomes known. Once all the state-action pairs are known it calculates the optimal policy for the final model
and then runs this indefinitely. The algorithm has the following guarantee:
Theorem 3 (R-MAX in MDPs without abstraction (Brafman & Tennenholtz, 2002)). Given an MDP
M, with |S| states and |A| actions, and inputs ϵ and δ. With probability of at least 1 − δ the R-MAX
algorithm will attain an expected average return of Opt(

∏
M (ϵ, Tϵ)) − 2ϵ within a number of steps polynomial

in |S|, |A|, 1
ϵ

1
δ , Tϵ. Where Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-

return mixing time is Tϵ are denoted by
∏

M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return
achievable by such policies are denoted by Opt(

∏
M (ϵ, Tϵ)).

Here Tϵ is the ϵ-return mixing time of a policy π, it is the minimum number of steps needed to guarantee
that the expected average return is within ϵ of the optimal expected average return (Kearns & Singh, 2002).

For R-MAX from Abstracted Observations, we make the following assumptions that stem from the original
analysis: we assume that the MDP is ergodic (Puterman, 2014), 7 that we know S and A, that the reward

7An ergodic, or recurrent, MDP is an MDP where every state is recurrent under every stationary policy, i.e., asymptotically,
every state will be visited infinitely often (Puterman, 2014).
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Algorithm 1 Procedure: R-MAX from Abstracted Observations
Input: ϕ, δ, ϵ, Tϵ

for all (s̄, a) ∈ S̄ × A do
T̄Y (s̄|s̄, a) = 1
R̄Y (s̄, a) = Rmax
Ȳs̄,a = [ ]

end for
M̄Y = ⟨S̄, A, T̄Y , R̄Y ⟩
Select m, the number of samples required per (abstract) state-action pair to make them known.
// While there is still an unknown state-action pair.
while min(s̄,a) |Ys̄,a| < m do

Compute optimal Tϵ-step policy π̄ in M̄Y for the current abstract state.
for Tϵ timesteps do

s̄ = ϕ(s)
a = π̄(s̄)
s′, r = Step(s, a)
s = s′

if |Ȳs̄,a| < m then
Ȳs̄,a.append(ϕ(s′))
if |Ȳs̄,a| = m then

// State-action pair has become known.
for all s̄′ ∈ S̄ do

T̄Y (s̄′|s̄, a) = 1
m

∑m
i=1 1{Ȳ

(i)
s̄,a = s̄′}

end for
R̄Y (s̄, a) = r
break

end if
end if

end for
end while
Compute optimal policy π̄∗ for M̄ and run indefinitely.

function is deterministic, and that we know the minimum and maximum reward. W.l.o.g., we assume the
rewards are between 0 and Rmax, with 0 < Rmax < ∞. We add the assumption that the agent has access
to an approximate model similarity abstraction function ϕ and that each state in an abstract state has the
same reward function. 8

Algorithm 1 shows the procedure for R-MAX from Abstracted Observations. It follows the same steps as the
original algorithm, except that it makes use of an abstraction function ϕ and maintains an abstract model.
As in the original, the input to the algorithm is the allowed failure probability δ, the error bound ϵ, and
the ϵ-return mixing time Tϵ of an optimal policy. We add the abstraction function ϕ as a new input. The
algorithm uses this function to observe ϕ(s), as in Figure 1, and it builds an empirical (abstract) model from
the observations it obtains.

Because the algorithm uses an abstraction function ϕ, we cannot guarantee the ϵ error bound. However, with
Theorem 4 we can still guarantee an error bound that is a function of ϵ and the error η of the abstraction,
thus providing the first finite-sample guarantees for RLAO:
Theorem 4. Given an MDP M, an approximate model similarity abstraction ϕ, with ηR and ηT , and inputs
|S̄|, |A|, ϵ, δ, Tϵ. With probability of at least 1 − δ the R-MAX algorithm adapted to abstraction (Algorithm 1)
will attain an expected average return of Opt(

∏
M (ϵ, Tϵ))−3g(ηT , ηR)−2ϵ within a number of steps polynomial

in |S̄|, |A|, 1
ϵ

1
δ , Tϵ. Where Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-

8Note that this is just a slight simplification as any empirical estimate R̄ is guaranteed to be within ηR of any R̄ω , under
the assumption that the rewards are deterministic.
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return mixing time is Tϵ are denoted by
∏

M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return
achievable by such policies are denoted by Opt(

∏
M (ϵ, Tϵ)), and

g(ηT , ηR) = TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|.

The proof can be found in Appendix D.2 and follows the line of the original R-MAX proof, using the
assumptions mentioned at the start of Section 3. To translate the results to the RLAO setting, we first use
the Abstract L1 inequality (Theorem 2) to show that the empirical abstract model is accurate with high
probability. Then the performance bounds from Theorem 1 can be used to bound the loss in performance
by using an abstract policy based on the empirical abstract model in the MDP M instead of the optimal
(ground) policy π∗. These bounds hold for any ωX as long as ωX is a valid weighting function. That ωX

will be a valid weighting function follows from its definition in equation 18. Because Theorem 1 allows us to
directly bound the loss in performance for using an abstract policy, based on an abstract empirical model,
in the original problem M , the amount of steps is polynomial only in |S̄| instead of |S|.

As is typical with abstraction, there is a trade-off between the performance and the required number of steps:
a coarser abstract model can potentially learn much faster but could sacrifice optimality, while a non-abstract
model might have the best performance in the limit of infinite experience. We can see this trade-off in the
results of Theorems 3 and 4. When we directly model M without abstraction, Theorem 3 shows that the
algorithm will attain an expected return of Opt(

∏
M (ϵ, Tϵ)) − 2ϵ within a number of steps polynomial in

|S|, |A|, 1
ϵ

1
δ , Tϵ. Theorem 4 shows that, when we use an approximate model similarity abstraction to learn

an abstract model, this leads to an additional performance loss of 3g(ηT , ηR) due to the approximation.
However, the advantage of using the abstraction is that the number of steps within which this is achieved
is polynomial only in the size of the abstract space |S̄| rather than the (larger) original state space |S|.
Thus, these results show that the performance is not arbitrarily bad with approximate model similarity
abstraction. Moreover, when the abstraction errors (ηT and ηR) are small and the reduction in state space
is large, abstraction helps to reach near-optimal performance significantly faster.

5 Related Work

The problem we resolved in this paper may seem intuitive, but as we will make clear here, it is a funda-
mental problem in rich literature. Many studies have considered the combination of abstraction with either
planning or RL. Some studies avoid, or ignore, the issue of dependency by simply assuming that samples are
independent (Paduraru et al., 2008; Ortner et al., 2014b; Jiang et al., 2015; Badings et al., 2022). Others
avoid it by looking at convergence in the limit (Singh et al., 1995; Hutter, 2016; Majeed & Hutter, 2018) or
by assuming access to an MDP model (Hallak et al., 2013; Maillard et al., 2013; Ortner et al., 2019).

RL With Abstraction. A negative result has been provided in the RLAO setting, showing that R-
MAX (Brafman & Tennenholtz, 2002) no longer maintains its guarantees when paired with any state ab-
straction function (Abel et al., 2018). For this negative result, they give an example that uses approximate
Q∗ similarity abstractions (Abel et al., 2016). Our counterexample is more powerful: indicating problems
with the analysis even for approximate model similarity abstractions (an approximate model similarity ab-
straction is also an approximate Q∗ abstraction, but not the other way around). Nevertheless, our second
result shows that it is still possible to give guarantees in RLAO for R-MAX-like algorithms when we use an
approximate model similarity abstraction and take the ηR and ηT inaccuracies into account.

Another study considered a setting related to abstraction, where the transition and reward functions can
change over time, either abruptly or gradually (Ortner et al., 2020). The reward and transition probabilities
depend on the timestep t, so T (s′|s, a, t) instead of T (s′|s, a). They bound the variation in the reward and
transition functions over time. By taking the variation over time into account they are able to give results.
In their setting, the MDP is fixed given the timestep. However, in RLAO this is not fixed. Each time the
transition function at a timestep t could be different.

Recently regret guarantees have been found for the episodic (continuous) RL setting (Sinclair et al., 2022).
Their abstraction method learns an abstraction adaptively. The model-based version of their algorithm
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requires that the state and actions spaces are embedded in compact metric spaces. In this way, they can
define a measure of the difference between state-action pairs in these metric spaces. However, they require
oracle access to this metric. In our setting this would require knowing the transition and reward functions,
which we assume we do not.

Abstraction Selection. There are quite a few studies in the area of abstraction selection, where the
agent has access to a set of abstraction functions (state representations)(Hallak et al., 2013; Maillard et al.,
2013; Lattimore et al., 2013; Ortner et al., 2014a; 2019). Several studies assume that the given set of state
representations contains at least one Markov model (Hallak et al., 2013; Maillard et al., 2013; Ortner et al.,
2019). One study gives asymptotic guarantees for selecting the correct model and building an exact MDP
model (Hallak et al., 2013). The assumption that an MDP model exists in the given set of representations
is crucial in their analysis since the samples are i.i.d. for this MDP model. Similarly, other studies also
assume that the given set of state representations contains a Markov model (Maillard et al., 2013; Ortner
et al., 2019). They create an algorithm for which they obtain regret bounds, and their analysis also uses the
Markov representation.

Some studies in abstraction selection do not assume the given abstraction functions contain a Markov
model (Lattimore et al., 2013; Ortner et al., 2014a). Lattimore et al. (2013) deal with a more general
setting where the problem may be non-Markovian. Instead of assuming access to a set of abstractions, they
assume access to a set of models, including a model of the true environment. Since they are given models,
they do not focus on learning them, making it very different from our setting. By observing the rewards
obtained while executing a policy they are able to exclude unlikely models, and eventually find the true
model of the environment. The other study (Ortner et al., 2014a) uses Theorem 2.1 from Weissman et al.
(2003), which requires i.i.d. samples. We have shown that independent samples cannot be guaranteed in
RLAO.

MDPs With Rich Observations. Other related work is in MDPs with rich observations or block struc-
ture (Azizzadenesheli et al., 2016; Du et al., 2019; Allen et al., 2021). In that setting, each observation can
only be generated from a single hidden state, which means that the issue of non-i.i.d. data due to abstraction
does not arise. We can view the rich observation setting as an aggregation problem, where the observations
can be aggregated to form a small (latent) MDP (Azizzadenesheli et al., 2016). Their setting is related to
exact model similarity (or bisimulation) (Du et al., 2019). In contrast, in RLAO, each observation can be
generated from multiple hidden states, and we do not try to learn the MDP, as it is not small. Furthermore,
we focus on approximate model similarity, which introduces the problems as described in Section 3.2.

I.I.D. Samples. One way to avoid the issue of dependent samples is by assuming that samples are obtained
independently (Paduraru et al., 2008; Ortner et al., 2014b; Jiang et al., 2015; Badings et al., 2022). One study
considers the setting with a continuous domain where we are given a data set with i.i.d. samples (Paduraru
et al., 2008). They use discretization to aggregate states into abstract states and give a guarantee that, with
a high probability, the model will be ϵ-accurate given a fixed data set. While they assume that the data has
been gathered i.i.d., our results show that martingale concentration inequalities could be used to extend their
results to the online data collection in the RLAO setting. Discretization has been used in another study in a
continuous space (Badings et al., 2022). They search for a solution for a linear dynamical system, where the
transitions are deterministic, except for an additive noise component. They assume this noise is distributed
i.i.d. and try to learn the resulting abstract transition functions by iteratively sampling N samples per
abstract-state action pair until a threshold is reached. They assume that samples can be obtained cheaply,
e.g., through a simulator, whereas we focus on the exploration problem where data has to be collected online
and is expensive. Another study operates in the abstraction selection setting (Jiang et al., 2015). While they
do not assume that a Markov model exists in the given set of abstraction functions, they assume a given
data set, with i.i.d. data. They give a bound on how accurate the Q-values based on the (implicitly) learned
model will be rather than on the accuracy of the model itself. As we showed, the assumption that the data
is i.i.d. is not trivial since it means the data cannot just be collected online. Another study’s primary focus
is on bandits but also gives results for MDPs with a coloring function (Ortner et al., 2014b). We can view
state aggregation as a special case of this coloring. They extend the results from UCRL2 (Jaksch et al.,
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2010) to the setting with a coloring function. They use the Azuma-Hoeffding inequality for the transition
function, which holds for weakly dependent samples. However, they assume the samples are independent
and do not show the martingale difference sequence property for the (actually dependent) samples.

Asymptotic Results. Another way to deal with dependence between samples is by looking at convergence
in the limit (Singh et al., 1995; Hutter, 2016; Majeed & Hutter, 2018). One study gives an asymptotic result
for convergence of Q-learning and TD(0) in MDPs with soft state aggregation (Singh et al., 1995). In soft
state aggregation, a state s belongs to a cluster x with some probability P (x|s), which means a state s
can belong to several clusters. Their result requires an ergodic MDP and a stationary policy that assigns a
non-zero probability to every action. Together these imply a limiting state distribution, and they use this to
show convergence asymptotically. Another study gives multiple results focusing on approximate and exact
abstractions in environments without MDP assumptions (Hutter, 2016). Several of these results are in the
planning setting, similar to other planning results for approximate abstractions (Abel et al., 2016). Most
relevant for us is their Theorem 12, which for online RL shows convergence in the limit of the empirical
transition function under weak conditions, e.g., when the abstract process is an MDP. Under this condition,
however, the problem reduces to RL in an (abstract) MDP rather than RLAO. Follow-up work builds on some
of these results and focuses on the combination of model-free RL and exact abstraction, also without MDP
assumptions (Majeed & Hutter, 2018). They define and operate in a Q-Value Uniform Decision Process, with
a mapping from histories to (non-Markovian) states and a “state-uniformity condition”. The state-uniformity
means that if two histories map to the same state s, their optimal Q-values are also the same. They show
that, under state-uniformity, Q-learning converges in the limit to the optimal solution. In contrast to our
setting, they used an exact abstraction and left extending the results to approximate abstraction as an open
question.

Planning and Abstraction. For planning in abstract MDPs, there are results for exact state abstrac-
tions (Li et al., 2006) and approximate state abstractions (Abel et al., 2016). The results for approximate
state abstractions allow for quantifying an upper bound on performance for the optimal policy of an abstract
MDP, e.g., as in Theorem 1 for approximate model similarity in Section 2.3. A study built on these results
by giving a result for performing RL interacting with an explicitly constructed abstract MDP (Taïga et al.,
2018); since the abstract MDP is still an MDP, this is different from RLAO.

MBRL Using I.I.D. Bounds. Concentration inequalities for i.i.d. samples, such as the result from Weiss-
man et al. (2003), are often directly applied to the empirical transition function (Brafman & Tennenholtz,
2002; Jaksch et al., 2010; Fruit et al., 2018; Bourel et al., 2020), without mentioning that these samples
in a simple RL trajectory may not be independent as shown for instance by Strehl & Littman (2008) in a
non-communicating MDP. 9 Strehl & Littman (2008) show that there dependence is not a problem because
it is still possible to use a concentration inequality for independent samples, e.g., Hoeffding’s inequality, as
an upper bound, which implies that derived performance loss bounds are valid. However, their proof uses
that transitions and rewards are identically distributed, which is not guaranteed in RLAO.

RL Using Martingale Bounds. Martingale concentration inequalities have been used regularly in online
RL analysis (Strehl & Littman, 2008; Li, 2009; Jaksch et al., 2010; Lattimore et al., 2013; Maillard et al.,
2013; Ortner et al., 2014b; Azizzadenesheli et al., 2016; Ortner et al., 2019; 2020). Our novelty is in using it
in RLAO, where we use it to show that we can learn an accurate model and provide performance guarantees
in this setting. Several works that employ martingale concentration inequalities are not in the RLAO setting
or do not use them for the transition model, and instead apply them to other parts of the analysis such as
bounding the difference between the actual and expected returns (Strehl & Littman, 2008; Jaksch et al., 2010;
Lattimore et al., 2013; Maillard et al., 2013; Ortner et al., 2014a; 2019). Other works do use martingales
for a transition model (Li, 2009; Ortner et al., 2014b; Azizzadenesheli et al., 2016; Ortner et al., 2020).
However, these either (implicitly or explicitly) assume samples to be independent (Ortner et al., 2014b;
2020) or identically distributed (Li, 2009; Azizzadenesheli et al., 2016), unlike our analysis. Since, as we

9An MDP is communicating if, for all s1, s2 ∈ S, a deterministic policy exists that eventually leads from s1 to s2 (Puterman,
2014).
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detailed in Section 3, independent nor identically distributed samples cannot be guaranteed in RLAO, their
analyses do not extend to this setting.

6 Discussion and Future Work

Some assumptions we made, i.e., that the reward function is deterministic and each state in an abstract
state has the same reward function, can be relaxed. To accurately learn an abstract reward function, one
should define a suitable martingale difference sequence, after which Lemma 3 can be used. We considered
approximate model similarity abstraction and used the properties of this abstraction to establish an upper
bound on the difference in value between the original MDP and an abstract MDP under any abstract policy.
This bound was imperative for our results. We established this bound by proof of induction on the difference
in value for a horizon n. This technique could be used to establish similar bounds and extend our results for
other abstractions, e.g., approximate Q∗ similarity abstractions (Abel et al., 2016).

Our analysis showed how to extend the results of R-MAX (Brafman & Tennenholtz, 2002) to RLAO. Ex-
tending results of other algorithms, e.g., MBIE (Strehl & Littman, 2008) and UCRL2 (Jaksch et al., 2010),
requires adapting to slightly different assumptions. For instance, R-MAX assumes ergodicity, while UCRL2
and MBIE assume the problem is communicating and non-communicating, respectively. Other algorithms
sometimes use concentration inequalities other than Hoeffding’s Inequality, e.g., the empirical Bernstein in-
equality (Audibert et al., 2007; Maurer & Pontil, 2009) or the Chernoff bound. To adapt these, we could,
for instance, use Bernstein-type inequalities for martingales (Dzhaparidze & Van Zanten, 2001).

Theorem 4 shows that, despite problems with dependence, we can give finite-sample guarantees when com-
bining approximate model similarity abstractions with MBRL. For good abstraction functions, i.e., when ηR

and ηT are small and |S| ≫ |S̄|, this leads to near-optimal solutions while needing fewer samples, compared
to learning without abstraction. Practically, for tabular methods, these results mostly mean that concen-
tration inequalities for independent samples have to be replaced in RLAO, for example by concentration
inequalities based on martingales, as we have shown here. In deep model-based RL, several recent empirical
works have shown promising results by focusing on learning exact abstractions (Biza & Platt, 2019; van der
Pol et al., 2020). An interesting direction is adapting these methods to learn approximate abstractions
instead of exact abstractions. Since, compared to exact model similarity abstractions, approximate model
similarity abstraction generally results in a smaller (abstract) state space; this could lead to faster learning.

Our results shed further light on the observation from Abel et al. (2018) that RLAO is different from per-
forming RL in an MDP constructed with abstraction. As our observations show, in RLAO the transition
functions are not static, the samples are not identically distributed, and cannot be guaranteed to be inde-
pendent. This could mean that in situations where we want to learn an abstraction, the behavior is also
not quite as expected. In such situations, similar approaches that we applied here may prove useful, as
many situations in RL have already been shown to not be independent processes. While our results hold
for approximate model similarity models, there could be even more compact representations for which our
techniques could lead to similar results. One clear example would be abstractions that focus not on state
abstraction, but rather on state-action abstraction, of which state abstraction is simply a special case.

People have been applying MDPs and RL to all kinds of problems, even though we know that the Markov
property very rarely holds. Given that almost all theory of RL critically depends on this property, one could
wonder why these things even work? Intuitively, we expect that the states in these successful applications are
somehow “Markovian enough”. In this work, we provide an understanding of this vague concept. Specifically,
we show that an existing criterion of state representations (approximate model similarity) in fact is a formal
notion of “Markovian enough” in MBRL. Thus, it provides critical insight into under what circumstances
(and therefore in what applications) MBRL methods are expected to work.

7 Conclusion

We analyzed RLAO: online MBRL combined with state abstraction when the model of the MDP is unavail-
able. Via a counterexample, we showed that it cannot be guaranteed that samples obtained online in RLAO
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are independent. Many current guarantees from MBRL methods use concentration results that assume i.i.d.
samples, e.g., Theorem 2.1 from Weissman et al. (2003), the empirical Bernstein inequality (Audibert et al.,
2007; Maurer & Pontil, 2009), or the Chernoff bound. Because they use these concentration inequalities,
their guarantees do not hold in RLAO. In fact, none of the existing analyses of MBRL apply to RLAO. We
showed that samples in RLAO are only weakly dependent and that concentration inequalities for (weakly)
dependent variables, such as Lemma 3, are a viable alternative through which we can come to guarantees
on the empirical model. We used this result to present the first sample efficient learning results for RLAO,
thus showing it is possible to combine the benefits of abstraction and MBRL. These results showcase under
what circumstances performance guarantees in MBRL can be transferred to settings with abstraction.
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A Well Known Results

We restate some well-known results that we use in the proofs in the other sections.

A.1 Hoeffding’s Inequality

Hoeffding’s inequality can tell us the probability that the average of m random independent (but not neces-
sarily identically distributed) samples deviates more than ϵ from its expectation.

Let Z(1), Z(2), · · · , Z(m) be bounded independent random variables, and let Z̄ and µ be defined as

Z̄ ≜
Z(1) + · · · + Z(m)

m
, (38)

µ ≜ E[Z̄] = E[Z(1) + · · · + Z(m)]
m

. (39)

Then Hoeffding’s inequality states:
Lemma 4 (Hoeffding’s inequality (Hoeffding, 1963)). If Z(1), Z(2), · · · , Z(m) are independent and 0 ≤ Z(i) ≤
1 for i = 1, · · · , m, then for 0 < ϵ < 1 − µ we have the following inequalities

Pr(Z̄ − µ ≥ ϵ) ≤ e−2mϵ2
, (40)

Pr(|Z̄ − µ| ≥ ϵ) ≤ 2e−2mϵ2
, (41)

Pr(
m∑

i=1
(Z(i) − µ) ≥ ϵ) ≤ e−2 ϵ2

m , (42)

Pr(|
m∑

i=1
(Z(i) − µ)| ≥ ϵ) ≤ 2e−2 ϵ2

m . (43)

A.2 Union Bound

Given that we have a set of events, the union bound allows us to upper bound the probability that at least
one of the events happens, even when these events are not independent.
Lemma 5 (Union Bound (Boole, 1854)). For a countable set of events A1, A2, A3, · · · , we have

Pr(∪iAi) ≤
∑

i

Pr(Ai). (44)

I.e., the probability that at least one of the events happens is, at most, the sum of the probabilities of the
individual events.

A.3 Value Bounds for Abstract and True Models

Here we give upper bounds on the difference in value between the real MDP and an abstract MDP under
various policies. We will use these bounds in Appendix D to adapt the results of R-MAX (Brafman &
Tennenholtz, 2002) to RLAO. These bounds and proofs are very similar to existing bounds (Brafman &
Tennenholtz, 2002; Strehl & Littman, 2008; Abel et al., 2016; Taïga et al., 2018). Here we repeat these for
abstract models in the undiscounted finite horizon and in the discounted infinite horizon.

We define the finite horizon value function ∀s ∈ S:

V π,n(s) = R(s, π(s)) +
∑
s′∈S

T (s′|s, π(s))V π,n−1(s), (45)

V π,1(s) = R(s, π(s)). (46)

We use V π̄,n to denote the value in M under policy π̄ and V̄ π̄,n to denote the value in M̄ under policy π̄.
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Theorem 1. Let M = ⟨S, A, T, R⟩ be an MDP and M̄ = ⟨S̄, A, T̄ , R̄⟩ an abstract MDP, for some defined
abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a) − Pr(s̄′|s, a)| ≤ ηT

and |R̄(s̄, a) − R(s, a)| ≤ ηR.
(47)

Then, for a finite horizon problem with horizon h we have:

V ∗(s) − V π̄∗
(s) ≤ 2hηR + (h + 1)hηT |S̄|Rmax. (48)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s) − V π̄∗
(s) ≤ 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 . (49)

We will use the following two Lemmas to proof the Theorem.
Lemma 6. Under the assumption of equation 47 and for every abstract policy π̄ and for every state s ∈ s̄,
we have: for a finite horizon problem with horizon h:

|V π̄,h(s) − V̄ π̄,h(s)| ≤ hηR + (h − 1)h
2 ηT |S̄|Rmax, (50)

and for a discounted infinite horizon problem with discount γ:

|V π̄(s) − V̄ π̄(s)| ≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 . (51)

Proof. The proof follows the same steps for both the discounted infinite horizon and the undiscounted finite
horizon. For completeness, we show them both here.

First, for the undiscounted finite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ nηR + (n − 1)n
2 ηT |S̄|Rmax. (52)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = |R(s, π(s̄)) − R̄(s̄, π̄(s̄))| ≤ ηR. (53)

Now assume that the induction hypothesis, equation 52, holds for n − 1, then

|V π̄,n(s) − V̄ π̄,n(s)| = |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄)) +
∑
s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)|

(54)

≤ |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄))| + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (55)

≤ ηR + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄))|

+ |
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄)) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (56)

≤ ηR + |
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′) − V̄ π̄,n−1(s̄′)

]
| + |

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄)) −

∑
s′∈s̄′

T (s′|s, π̄(s̄))
]
V̄ π̄,n−1(s̄′)|

(57)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S̄|Rmax + ηT |S̄|(n − 1)Rmax (58)

= nηR + (n − 2)(n − 1)
2 ηT |S̄|Rmax + ηT |S̄|(n − 1)Rmax (59)

= nηR + (n − 1)n
2 ηT |S̄|Rmax. (60)
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For the step from equation 55 to equation 56, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 57 to equation 58, we use the inductive hypothesis and the fact that (n − 1)Rmax is an
upper bound on V̄ π̄,n−1(s̄′) since the maximum reward per timestep is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (61)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = |R(s, π(s̄)) − R̄(s̄, π̄(s̄))| ≤ ηR. (62)

Now assume that the induction hypothesis, equation 61, holds for n − 1, then

|V π̄,n(s) − V̄ π̄,n(s)| = |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄)) + γ(
∑
s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′))|

(63)

≤ |R(s, π̄(s̄)) − R̄(s̄, π̄(s̄))| + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (64)

≤ ηR + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′) −
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄))|

+ γ|
∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, π̄(s̄)) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (65)

≤ ηR + γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′) − V̄ π̄,n−1(s̄′)

]
| + γ|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄)) −

∑
s′∈s̄′

T (s′|s, π̄(s̄))
]
V̄ π̄,n−1(s̄′)|

(66)

≤ ηR + γ(ηRγn−2 +
n−3∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
)) + γηT |S̄|Rmax

1 − γ
(67)

= ηR + ηRγn−1 +
n−2∑
i=1

γi(ηR + γηT |S̄|Rmax

1 − γ
) + γηT |S̄|Rmax

1 − γ
(68)

= ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (69)

For the step from equation 64 to equation 65, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 66 to equation 67, we use the inductive hypothesis and the fact that Rmax

1−γ is an upper
bound on V̄ π̄,n−1(s̄′).

Finally, taking the limit for n → ∞, we get:

|V π̄(s) − V̄ π̄(s)| ≤ ηR × 0 + 1
1 − γ

(ηR + γηT |S̄|Rmax

1 − γ
)

= ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 .

Lemma 7. Under the assumption of equation 47 and for every state s ∈ s̄, we have: for a finite horizon
problem with horizon h:

|V ∗,h(s) − V̄ ∗,h(s)| ≤ hηR + (h − 1)h
2 ηT |S̄|Rmax, (70)
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and for a discounted infinite horizon problem with discount γ:

|V ∗(s) − V̄ ∗(s)| ≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 . (71)

Proof. First, we define

∀s̄ ∈ S̄, s ∈ S : V ∗,n(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V ∗,n−1(s′)
]
, (72)

V̄ ∗,n(s̄) = max
a∈A

[
R̄(s̄, a) + γ

∑
s̄′∈S̄

T̄ (s̄′|s, a)V̄ ∗,n−1(s̄′)
]
. (73)

For the undiscounted case γ = 1, so we can drop γ from the notation.

The proof follows the same steps as the proof of Lemma 6. We start again with the undiscounted finite
horizon.

By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V ∗,n(s) − V̄ ∗,n(s̄)| ≤ nηR + (n − 1)n
2 ηT |S̄|Rmax. (74)

Making use of the fact that | max f − max g| ≤ max |f − g|, we have for n = 1

|V ∗,1(s) − V̄ ∗,1(s)| = | max
a∈A

R(s, a) − max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a) − R̄(s̄, a)| ≤ ηR. (75)

Now assume that the induction hypothesis, equation 74, holds for n − 1, then

|V ∗,n(s) − V̄ ∗,n(s̄)| = max
a∈A

|R(s, a) − R̄(s̄, a) +
∑
s′∈S

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (76)

≤ max
a∈A

|R(s, a) − R̄(s̄, a)| + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (77)

≤ ηR + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a)|

+ max
a∈A

|
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (78)

≤ ηR + max
a∈A

|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′) − V̄ ∗,n−1(s̄′)

]
| + max

a∈A
|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, a) −

∑
s′∈s̄′

T (s′|s, a)
]
V̄ ∗,n−1(s̄′)|

(79)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S̄|Rmax + ηT (n − 1)|S̄|Rmax (80)

= nηR + (n − 1)n
2 ηT |S̄|Rmax. (81)

For the step from equation 77 to equation 78, we subtract and add
∑

s̄′∈S̄ V̄ ∗,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, a), and
from equation 79 to equation 80, we use the inductive hypothesis and again the fact that (n − 1)Rmax is an
upper bound on V̄ ∗,n−1(s̄′) since the maximum reward per timestep is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s) − V̄ π̄,n(s)| ≤ ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (82)

For n = 1, we have

|V π̄,1(s) − V̄ π̄,1(s)| = | max
a∈A

R(s, a) − max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a) − R̄(s̄, a)| ≤ ηR. (83)
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Now assume that the induction hypothesis, equation 82, holds for n − 1, then

|V ∗,n(s) − V̄ ∗,n(s̄)| = max
a∈A

|R(s, a) − R̄(s̄, a) + γ
∑
s′∈S

T (s′|s, a)V ∗,n−1(s′) − γ
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (84)

≤ max
a∈A

|R(s, a) − R̄(s̄, a)| + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (85)

≤ ηR + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′) −
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a)|

+ max
a∈A

γ|
∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑
s′∈s̄′

T (s′|s, a) −
∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (86)

≤ ηR + max
a∈A

γ|
∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′) − V̄ ∗,n−1(s̄′)

]
| + max

a∈A
γ|

∑
s̄′∈S̄

[
T̄ (s̄′|s̄, a) −

∑
s′∈s̄′

T (s′|s, a)
]
V̄ ∗,n−1(s̄′)|

(87)

≤ ηR + γ(ηRγn−2 +
n−3∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
)) + γηT |S̄|Rmax

1 − γ
(88)

= ηR + ηRγn−1 +
n−2∑
i=1

γi(ηR + γηT |S̄|Rmax

1 − γ
) + γηT |S̄|Rmax

1 − γ
(89)

= ηRγn−1 +
n−2∑
i=0

γi(ηR + γηT |S̄|Rmax

1 − γ
). (90)

For the step from equation 85 to equation 86, we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from equation 87 to equation 88, we use the inductive hypothesis and the fact that Rmax

1−γ is an upper
bound on V̄ ∗,n−1(s̄′).

Finally, taking the limit for n → ∞, we get:

|V ∗(s) − V̄ ∗(s)| ≤ ηR × 0 + 1
1 − γ

(ηR + γηT |S̄|Rmax

1 − γ
)

= ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 .

Proof of Theorem 1. We can now proof Theorem 1, by using the triangle inequality and the results of
Lemmas 6 and 7. For the undiscounted finite horizon:

|V ∗,h(s) − V π̄∗,h(s)| ≤ |V ∗,h(s) − V̄ ∗,h(s)| + |V̄ ∗,h(s) − V π̄∗,h(s)|
= |V ∗,h(s) − V̄ ∗,h(s)| + |V̄ π̄∗,h(s) − V π̄∗,h(s)|

≤ hηR + (h − 1)h
2 ηT |S̄|Rmax + hηR + (h − 1)h

2 ηT |S̄|Rmax

= 2hηR + (h − 1)hηT |S̄|Rmax.

For the discounted infinite horizon:
|V ∗(s) − V π̄∗

(s)| ≤ |V ∗(s) − V̄ ∗(s)| + |V̄ ∗(s) − V π̄∗
(s)|

= |V ∗(s) − V̄ ∗(s)| + |V̄ π̄∗
(s) − V π̄∗

(s)|

≤ ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2 + ηR

1 − γ
+ γηT |S̄|Rmax

(1 − γ)2

= 2ηR

1 − γ
+ 2γηT |S̄|Rmax

(1 − γ)2 .
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A.3.1 Value Difference for Similar MDPs

Finally, we give a simulation lemma for two MDPs on the same state-action space.
Lemma 8. Let M and M ′ be two MDPs on the same state-action space, with

∀s, a ∈ S × A : |RM (s, a) − RM ′(s, a)| ≤ ηR, (91)
∀s, a, s′ ∈ S × A × S : |TM (s′|s, a) − TM ′(s′|s, a)| ≤ ηT . (92)

Then, for every policy π and for every state s ∈ S we have:

|V π,n
M (s) − V π,n

M ′ (s)| ≤ nηR + (n − 1)n
2 ηT |S|Rmax. (93)

Proof. By induction, we will show that for n ≥ 1

∀s ∈ S : |V π,n
M (s) − V π,n

M ′ (s)| ≤ nηR + (n − 1)n
2 ηT |S|Rmax. (94)

For n = 1, we have

|V π,1
M (s) − V π,1

M ′ (s)| = |RM (s, π(s)) − RM ′(s, π(s))| ≤ ηR. (95)

Now assume that the induction hypothesis, equation 94, holds for n − 1, then

|V π,n
M (s) − V π,n

M ′ (s)| = |RM (s, π(s̄)) − RM ′(s, π(s)) +
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM ′(s′|s, π(s)))V π,n−1
M ′ (s′)|

(96)

≤ |RM (s, π(s)) − RM ′(s, π(s))| + |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM ′(s′|s, π(s))V π,n−1
M ′ (s′)| (97)

≤ ηR + |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M (s′) −

∑
s′∈S

TM (s′|s, π(s))V π,n−1
M ′ (s′)|

+ |
∑
s′∈S

TM (s′|s, π(s))V π,n−1
M ′ (s′) −

∑
s′∈S

TM ′(s′|s, π(s))V π,n−1
M ′ (s′)| (98)

≤ ηR + |
∑
s′∈S

TM (s′|s, π(s))
[
V π,n−1

M (s′) − V π,n−1
M ′ (s′)

]
| + |

∑
s′∈S

[
TM (s′|s, π(s)) − TM ′(s′|s, π(s))

]
V π,n−1

M ′ (s′)|

(99)

≤ ηR + (n − 1)ηR + (n − 1 − 1)(n − 1)
2 ηT |S|Rmax + ηT (n − 1)|S|Rmax (100)

= nηR + (n − 2)(n − 1)
2 ηT |S|Rmax + ηT (n − 1)|S|Rmax (101)

= nηR + (n − 1)n
2 ηT |S|Rmax. (102)

For the step from equation 97 to equation 98, we add and subtract
∑

s̄′∈S TM (s′|s, π(s))V π,n−1
M ′ (s′), and

from equation 99 to equation 100, we use the inductive hypothesis and the fact that (n − 1)Rmax is an upper
bound on V π,n−1

M ′ (s′) since the maximum reward per timestep is Rmax.

This shows that the values under any policy are similar for similar MDPs.

B L1 Inequality for Independent but Not Identically Distributed Variables

We show that we can adapt the proof of Weissman et al. (2003) for independent, but not identically dis-
tributed, samples to obtain the following result:

Lemma 2. Let Xs̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be
independent random variables distributed according to Pr(·|s1, a), · · · , Pr(·|sm, a). Then, ∀ϵ > 0,

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1

2 mϵ2
. (103)
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Proof of Lemma 2. The proof mostly follows the steps by Weissman et al. (2003).

To shorten the notation, we define PY ≜ T̄Y (·|s̄, a) and PωX
≜ T̄ωX

(·|s̄, a).

We will make use of the following result (Proposition 4.2 in (Levin & Peres, 2017)), that for any distribution
Q on S̄

||Q − PωX
||1 = 2 max

S̄⊆S̄
(Q(S̄) − PωX

(S̄)),

where S̄ is a subset of S̄, and PωX
(S̄) =

∑
s̄′∈S̄ PωX

(s̄′). Thus, we have that

||PY − PωX
||1 = 2 max

S̄⊆S̄
(PY (S̄) − PωX

(S̄)). (104)

Using this, we can write

Pr(||PY − PωX
||1 ≥ ϵ) = Pr

[
2 max

S̄⊆S̄

[
PY (S̄) − PωX

(S̄)
]

≥ ϵ
]

(105)

= Pr
[

max
S̄⊆S̄

[
PY (S̄) − PωX

(S̄)
]

≥ ϵ

2

]
(106)

= Pr
[

∪S̄⊆S̄

[
PY (S̄) − PωX

(S̄) ≥ ϵ

2
]]

(107)

≤
∑
S̄⊆S̄

Pr
[
PY (S̄) − PωX

(S̄) ≥ ϵ

2

]
, (108)

where the last step follows from the union bound (Lemma 5).

Assuming ϵ > 0, we have that Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2 ) = 0 when S̄ = S̄ or S̄ = ∅. For every other subset
S̄, we can define a random binary variable that is 1 when Y (i) ∈ S̄ and 0 otherwise. Here PωX

(S̄) acts as
µ (equation 39) from Lemma 4 and PY (S̄) as Z̄ (equation 38). Thus, by applying Lemma 4 to this random
variable, we have

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) ≤ e−2m ϵ
2

2
= e− 1

2 mϵ2
. (109)

Then it follows that

Pr(||PY − PωX
||1 ≥ ϵ) ≤

∑
S̄⊆S̄

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) (110)

≤
∑

S̄⊂S̄:S̄≠S̄,∅

Pr(PY (S̄) − PωX
(S̄) ≥ ϵ

2) (111)

≤ (2|S̄| − 2)e− 1
2 mϵ2

, (112)

where S̄ ⊂ S̄ : S̄ ̸= S̄, ∅ denotes that the empty set ∅ and the complete set S̄ are excluded.

C Proof of Main Result

Here we show how we can use a concentration inequality for martingales to learn an accurate transition
model in RLAO. Specifically, the following result shows that, with a high probability, the empirical abstract
transition function T̄Y will be close to the abstract transition function T̄ωX

. In the proof, which follows the
general approach of Ortner et al. (2020), we define a suitable martingale difference sequence for the abstract
transition function and use this to obtain the following result for learning a transition function in RLAO:

Theorem 2 (Abstract L1 inequality). If an agent has access to a state abstraction function ϕ and uses this
to collect data for any abstract state-action pair (s̄, a) by acting in an MDP M according to a policy π̄, we
have that the following holds with a probability of at least 1 − δ for a fixed value of N(s̄, a):

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ, (113)

where δ = 2|S̄|e− 1
8 N(s̄,a)ϵ2 .
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Proof of Theorem 2. We first define an abstract transition function based on Xs̄,a as

∀(s̄, a), s̄′ : T̄ωX
(s̄′|s̄, a) ≜ 1

N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a), (114)

where T (s̄′|X(i)
s̄,a, a) ≜

∑
s′∈s̄′ T (s′|X(i)

s̄,a, a). We write T̄ωX
because this definition is equivalent to using a

weighting function as in equation 19:

∀(s̄, a), s̄′ : T̄ωX
(s̄′|s̄, a) ≜

∑
s∈s̄

ωX(s, a)
∑
s′∈s̄′

T (s′|s, a) (Eq. 19) (115)

=
∑
s∈s̄

1
N(s̄, a)

N(s̄,a)∑
i=1

1{X
(i)
s̄,a = s}

∑
s′∈s̄′

T (s′|s, a) (116)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

∑
s∈s̄

1{X
(i)
s̄,a = s}

∑
s′∈s̄′

T (s′|s, a) (117)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

∑
s′∈s̄′

T (s′|X(i)
s̄,a, a) (118)

= 1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a). (Eq. 114) (119)

Now we use z to denote a vector of size |S̄| with entries ±1, and we write z(s̄) for the entry in z with index
s̄. Then we have

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 =

∑
s̄′

|T̄Y (s̄′|s̄, a) − T̄ωX
(s̄′|s̄, a)| (120)

= max
z∈{−1,1}S̄

∑
s̄′

(
T̄Y (s̄′|s̄, a) − T̄ωX

(s̄′|s̄, a)
)

z(s̄′) (121)

= max
z∈{−1,1}S̄

∑
s̄′

( 1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′} − 1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a)

)
z(s̄′)

(122)

= max
z∈{−1,1}S̄

∑
s̄′

1
N(s̄, a)

N(s̄,a)∑
i=1

1{Ȳ
(i)

s̄,a = s̄′}z(s̄′) −
∑

s̄′

1
N(s̄, a)

N(s̄,a)∑
i=1

T (s̄′|X(i)
s̄,a, a)z(s̄′)

(123)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

z(Ȳ (i)
s̄,a ) − 1

N(s̄, a)

N(s̄,a)∑
i=1

∑
s̄′

T (s̄′|X(i)
s̄,a, a)z(s̄′) (124)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

(
z(Ȳ (i)

s̄,a ) −
∑

s̄′

T (s̄′|X(i)
s̄,a, a)z(s̄′)

)
(125)

= max
z∈{−1,1}S̄

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi
(z, X

(i)
s̄,a, a, Ȳ

(i)
s̄,a ), (126)

where we set

Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) ≜ z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi

)z(s̄′).

To show that
∑N(s̄,a)

i Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ) is a martingale difference sequence, we should follow Definition

3 and show that ∀i : E[Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] = 0 and |Zi| < ∞. For the second part, we
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have that ∀i : |Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )| ≤ 2, since |z(Ȳ (i)
s̄,a )| ≤ 1 and |

∑
s̄′ T (s̄′|X(i)

s̄,a, aτi
)z(s̄′)| ≤ 1. For the first

part, we use the following Lemma, the proof of which follows after the current proof.

Lemma 9. Let π be a policy, and suppose the sequence s1, a1 · · · , st−1, at−1, st is to be generated by π. If
1 ≤ τ1 < τ2 < · · · < τi−1 < τi ≤ t, then E[Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] = 0.

Lemma 9 shows that
∑N(s̄,a)

i Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) is a martingale difference sequence with ∀i :
|Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )| ≤ 2 for any fixed z and fixed N(s̄, a) = n so that by the Azuma-Hoeffding inequality
(Lemma 3):

Pr(
N(s̄,a)∑

i=1
Zτi > ϵ) ≤ e− ϵ2

8N(s̄,a) . (127)

Similarly,
∑N(s̄,a)

i
1

N(s̄,a) Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) is a martingale difference sequence with ∀i :
| 1

N(s̄,a) Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a )| ≤ 2

N(s̄,a) for any fixed z and N(s̄, a) = n so that, by the Azuma-Hoeffding
inequality (Lemma 3), the following holds:

Pr( 1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi
> ϵ) ≤ e

− ϵ2

2 4
N(s̄,a)2 N(s̄,a) (128)

= e
− ϵ2

8
N(s̄,a) (129)

= e− 1
8 N(s̄,a)ϵ2

. (130)

From equation 120 and equation 126, we then obtain

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 > ϵ) = Pr( max

z∈{−1,1}S

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ). (131)

A union bound (Lemma 5) over all 2|S̄| vectors z for a fixed value of N(s, a) shows

Pr( max
z∈{−1,1}S

1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ) ≤
∑

z∈{−1,1}S

Pr( 1
N(s̄, a)

N(s̄,a)∑
i=1

Zτi > ϵ). (132)

So, using equation 130, we have that the following holds with probability 1 − 2|S̄|e− 1
8 N(s̄,a)ϵ2 :

||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ. (133)

Now we give the proof of Lemma 9:

Proof of Lemma 9. We follow the general structure of the proof of Lemma 8 by Strehl & Littman (2008).
We have

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )] =
∑

cτi+1

Pr(cτi+1)Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (134)

=
∑
cτi

Pr(cτi
)

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |cτi

, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (135)

=
∑
cτi

Pr(cτi)
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)Zτi(z, X
(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ). (136)
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The sum
∑

cτi+1
is over all possible sequences cτi+1 that end in a state s̄τi+1, resulting from τi actions chosen

by an agent following policy π. Conditioning on the sequence of random variables Zτ1 , Zτ2 , · · · , Zτi−1 can
make some sequences cτi

more likely and others less likely, that is

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (137)

=
∑
cτi

Pr(cτi
|Zτ1 , Zτ2 , · · · , Zτi−1)

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ). (138)

Significantly, since P (Ȳ (i)
s̄,a |s̄τi

, aτi
, Zτ1 , · · · , Zτi−1) = P (Ȳ (i)

s̄,a |s̄τi
, aτi

), fixed values of Zτ1 , Zτ2 , · · · , Zτi−1 do
not influence the innermost sum of equation 138. For this innermost sum, we have∑

Ȳ
(i)

s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)Zτi

(z, X
(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a ) (139)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi
)
[

z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi

)z(s̄′)
]

(140)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)z(Ȳ (i)
s̄,a ) −

∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)
∑

s̄′

T (s̄′|X(i)
s̄,a, aτi)z(s̄′) (141)

=
∑
Ȳ

(i)
s̄,a

Pr(Ȳ (i)
s̄,a |X(i)

s̄,a, aτi)z(Ȳ (i)
s̄,a ) −

∑
s̄′

T (s̄′|X(i)
s̄,a, aτi)z(s̄′) (142)

= 0. (143)

So we conclude

E[Zτi
(z, X

(i)
s̄,a, aτi

, Ȳ
(i)

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (144)

=
∑
cτi

Pr(cτi |Zτ1 , Zτ2 , · · · , Zτi−1)
∑

s̄τi+1

Pr(s̄τi+1|X(i)
s̄,a, aτi)Zτi(z, X

(i)
s̄,a, aτi , Ȳ

(i)
s̄,a ) (145)

=
∑
cτi

Pr(cτi
|Zτ1 , Zτ2 , · · · , Zτi−1) × 0 (146)

= 0. (147)

D R-MAX From Abstracted Observations

Here we use the result of Theorem 2 to show that we can provide efficient learning guarantees for R-
MAX (Brafman & Tennenholtz, 2002) in RLAO. In Appendix D.1, we use Theorem 2 and the value bounds
in Appendix A.3 to establish two supporting Lemmas. Then, in Appendix D.2, we adapt one lemma and
the guarantees of R-MAX to RLAO.

D.1 Supporting Lemmas

We can use Theorem 2 to determine the number of samples required to guarantee that the distance
||T̄Y (·|s̄, a) − T̄ωX

(·|s̄, a)||1 will be smaller than ϵ with probability 1 − δ:
Lemma 10. For inputs κ and ϵ (0 < κ < 1, 0 < ϵ < 2), the following holds for a number of samples
m ≥ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 :

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ κ. (148)
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Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and PωX
≜ T̄ωX

(·|s̄, a). It follows
from Theorem 2 that

Pr(||PY − PωX
||1 ≥ ϵ) ≤ 2|S̄|e− 1

8 mϵ2
. (149)

We need to select m such that κ ≥ 2|S̄|e− 1
8 mϵ2 :

κ ≥ 2|S̄|e− 1
8 mϵ2

(150)
κ

2|S̄|
≥ e− 1

8 mϵ2
(151)

ln(κ) − ln(2|S̄|) ≥ −mϵ2

8 (152)

mϵ2

8 ≥ ln(2|S̄|) − ln(κ) (153)

m ≥ 8[ln(2|S̄|) − ln(κ)]
ϵ2 . (154)

Thus if m ≥ 8[ln(2|S̄|)−ln(κ)]
ϵ2 , we have

Pr(||PY − PωX
||1 ≥ ϵ) ≤ κ.

We want to give results for an empirical abstract model ˆ̄M in the abstract space from ϕ, whose transition
probabilities and rewards are within ηT and ηR, respectively, from those of an abstract MDP M̄ . We use
V ∗,n to denote the value in M under the n-step optimal policy and V ˆ̄π∗,n to denote the value in M under
the n-step optimal policy ˆ̄π∗ for ˆ̄M . The following lemma shows that we can upper bound the loss in value
when applying ˆ̄π∗ to M :
Lemma 11. Let M be an MDP, M̄ an abstract MDP constructed using an approximate model similarity
abstraction ϕ, with ηR and ηT , and ˆ̄M an MDP in the abstract space from ϕ with

|T̄ (s̄′|s̄, a) − ˆ̄T (s̄′|s̄, a)| ≤ ϵ, |R̄(s̄, a) − ˆ̄R(s̄, a)| = 0. (155)

Then

V ∗,n(s) − V
ˆ̄π∗,n(s) ≤ 2nηR + (n − 1)n(ηT + ϵ)|S̄|Rmax. (156)

Proof. Note that we assume that |R̄(s̄, a) − ˆ̄R(s̄, a)| = 0 because we assume a deterministic reward. Then,
we have

∀s̄, a ∈ S̄ × A, s ∈ s̄ : |R(s, a) − ˆ̄R(s̄, a)| ≤ ηR, (157)

∀s̄, a, s̄′ ∈ S̄ × A × S̄, s ∈ s̄ : |
∑
s′∈s̄′

T (s′|s, a) − ˆ̄T (s̄′|s̄, a)| ≤ ηT + ϵ. (158)

We use ˆ̄V ˆ̄π∗,n(s̄) to denote the n-step value under the n-step optimal policy ˆ̄π∗,n for the empirical abstract
MDP ˆ̄M . Then, by Theorem 1, we have ∀s ∈ s̄, s̄ ∈ S̄:

V ∗,n(s) − V
ˆ̄π∗,n(s) = 2nηR + (n − 1)n(ηT + ϵ)|S̄|Rmax. (159)

D.2 Proof of Theorem 4

First, we restate an Implicit Explore or Exploit Lemma that is used in the proof of R-MAX. We are interested
in the event AM , the event that we encounter an unknown state-action pair during an n-step trail in M . For
two MDPs with different dynamics only in the unknown state-action pairs, the probability that we encounter
an unknown state-action pair in an n-step trial is tiny if the difference in the n-step value between the two
MDPs is slight. The proof follows the steps the proof of Lemma 3 from Strehl & Littman (2008).
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Lemma 12 (Implicit Explore or Exploit). Let M be an MDP. Let L be the set of known abstract state-action
pairs, and let ML be an MDP that is the same as M on the known pairs (s̄, a) ∈ L, but different on the
unknown pairs (s̄, a) /∈ L. Let s be some state, and AM the event that an unknown abstract state-action pair
is encountered in a trial generated by starting from state s1 and following π for n steps in M . Then,

V π,n
M (s1) ≥ V π,n

ML
(s1) − nRmax Pr(AM ). (160)

Proof. For a fixed path pt = s1, a1, r1, · · · , st, at, rt, we define PrM (pt) as the probability that pt occurs when
running policy π in M starting from state s1. We let Lt be the set of paths pt such that there is at least one
unknown state si in pt ((ϕ(si), a) /∈ L). We further let rM (t) be the reward received at time t and rM (pt, t)
the reward at time t in the path pt. We have the following:

E
[
rML

(t)
]

− E
[
rM (t)

]
=

∑
pt∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(161)

+
∑

pt /∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(162)

=
∑

pt /∈Lt

(
Pr
ML

(pt)rML
(pt, t) − Pr

M
(pt)rM (pt, t)

)
(163)

≤
∑

pt /∈Lt

Pr
ML

(pt)rML
(pt, t) ≤ Rmax Pr(AM ). (164)

Here
∑

pt∈Lt

(
PrML

(pt)rML
(pt, t) − PrM (pt)rM (pt, t)

)
= 0 because, by definition, M and ML behave iden-

tically on the known state-action pairs, and
∑

pt /∈Lt
PrML

(pt)rML
(pt, t) ≤ Rmax Pr(AM ) is true because

rML
(pt, t) is at most Rmax. Finally we can write

V π,n
ML

(s1) − V π,n
M (s1) =

n∑
t=0

(E
[
rML

(t)
]

− E
[
rM (t)

]
) (165)

≤ nRmax Pr(AM ). (166)

Thus, V π,n
M (s1) ≥ V π,n

ML
(s1) − nRmax Pr(AM ).

Now we are ready to prove the theorem.

Theorem 4. Given an MDP M, an approximate model similarity abstraction ϕ, with ηR and ηT , and inputs
|S̄|, |A|, ϵ, δ, Tϵ. With probability of at least 1 − δ the R-MAX algorithm adapted to abstraction (Algorithm
1) will attain an expected return of Opt(

∏
M (ϵ, Tϵ)) − 3 g(ηT ,ηR)

Tϵ
− 2ϵ within a number of steps polynomial

in |S̄|, |A|, 1
ϵ

1
δ , Tϵ. Here Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M whose ϵ-

return mixing time is Tϵ are denoted by
∏

M (ϵ, Tϵ), the optimal expected Tϵ-step undiscounted average return
achievable by such policies are denoted by Opt(

∏
M (ϵ, Tϵ)), and

g(ηT , ηR) = TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|Rmax.

Proof of Theorem 4. The proof uses elements of the Theorem from Brafman & Tennenholtz (2002). The
proof follows the following steps:

1. We show that the expected average reward of the algorithm is at least as stated if the algorithm
does not fail.

2. The probability of failing is at most δ. We can decompose this probability into three elements.

(a) Probability that the transition function estimates are not within the desired bounds.
(b) The probability that we do not attain the number of required visits in polynomial time.
(c) The probability that the actual return is lower than the expected return.

30



Published in Transactions on Machine Learning Research (09/2023)

Now we first assume the algorithm does not fail. We define an abstract MDP M̄ωX
constructed from ϕ

with ηT and ηR. Similar to ML, M̄ωX ,L is the same as M̄ωX
on the known abstract state-action pairs,

but with a self-loop and the maximum reward (Rmax) on the unknown abstract state-action pairs, i.e.,
∀(s̄, a) /∈ L : T̄ωX ,L(s̄|s̄, a) = 1, R̄ωX ,L(s̄, a) = Rmax. We also define an empirical abstract MDP M̄Y , of
which the transition probabilities T̄Y (s̄′|s̄, a) are within some ϵ2 (defined later) of those in M̄ωX

and with
R̄ωX

(s̄, a) = R̄Y (s̄, a) because of the assumption that the rewards are deterministic. Then, M̄Y,L is the
abstract MDP that is the same as M̄Y on the known abstract state-action pairs and the same as M̄ωX ,L on
the unknown abstract state-action pairs. We denote the R-MAX policy with π̄.

Let AM be the event that, following π̄, we encounter an unknown abstract state-action pair (ϕ(s), a) /∈ L in
Tϵ steps. From Lemma 12, we have that:

∀s ∈ S : V π̄,n
M (s) ≥ V π̄,n

ML
(s) − TϵRmax Pr(AM ). (167)

Now suppose that Rmax Pr(AM ) < ϵ1, for some ϵ1 (defined later), then we have

V π̄,Tϵ

M (s) ≥ V π̄,Tϵ

ML
(s) − TϵRmax Pr(AM ) (168)

≥ V π̄,Tϵ

ML
(s) − Tϵϵ1 (169)

≥ V π̄,Tϵ

M̄ωX ,L
(s) − Tϵϵ1 − g(ηT , ηR) (170)

≥ V π̄,Tϵ

M̄Y,L
(s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) (171)

≥ V ∗,Tϵ

M̄Y
(s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) (172)

≥ V ∗,Tϵ

M (s) − Tϵϵ1 − g(ϵ2) − g(ηT , ηR) − 2g(ηT + ϵ2, ηR). (173)

Here the step from equation 168 to equation 169 follows because of the assumption that Rmax Pr(AM ) <
ϵ1. The step from equation 169 to equation 170 follows from Lemma 6, where g(ηT , ηR) = TϵηR +
(Tϵ−1)Tϵ

2 ηT |S̄|Rmax. The step from equation 170 to equation 171 follows from Lemma 8, where g(ϵ2) =
(Tϵ−1)Tϵ

2 ϵ2|S̄|Rmax. The step from equation 171 to equation 172 follows because the R-MAX policy π̄ is the
optimal policy for M̄Y,L, and M̄Y,L is the same as M̄Y on the known state-action pairs and overestimates
the value of the unknown state-action pairs (to the maximum value). Finally, the step from equation 172 to
equation 173 follows from Lemma 11.
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In equation 173 the results are for the undiscounted Tϵ-step sum of rewards, so to obtain the result for the
average reward per step, we have to divide equation 173 by Tϵ. We get

Opt(
∏
M

(ϵ, Tϵ)) − Tϵϵ1/Tϵ − g(ϵ2)/Tϵ − g(ηT , ηR)/Tϵ − 2g(ηT + ϵ2, ηR)/Tϵ (174)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)Tϵ

2 ϵ2|S̄|Rmax/Tϵ

− (TϵηR + (Tϵ − 1)Tϵ

2 ηT |S̄|Rmax)/Tϵ − 2(TϵηR + (Tϵ − 1)Tϵ

2 (ηT + ϵ2)|S̄|Rmax)/Tϵ (175)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)
2 ϵ2|S̄|Rmax

− ηR − (Tϵ − 1)
2 ηT |S̄|Rmax − 2ηR − (Tϵ − 1)(ηT + ϵ2)|S̄|Rmax (176)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − (Tϵ − 1)
2 ϵ2|S̄|Rmax

− 3ηR − (Tϵ − 1)
2 ηT |S̄|Rmax − (Tϵ − 1)ϵ2|S̄|Rmax − (Tϵ − 1)ηT |S̄|Rmax (177)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − 3(Tϵ − 1)
2 ϵ2|S̄|Rmax − 3ηR − 3(Tϵ − 1)

2 ηT |S̄|Rmax (178)

= Opt(
∏
M

(ϵ, Tϵ)) − ϵ1 − 3(Tϵ − 1)
2 ϵ2|S̄|Rmax − 3g(ηT , ηR)

Tϵ
(179)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 3(Tϵ − 1)

2 ϵ2|S̄|Rmax − 3g(ηT , ηR)
Tϵ

(180)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 3(Tϵ − 1)

2
3ϵ

4|S̄|Rmax(Tϵ − 1)
|S̄|Rmax − 3g(ηT , ηR)

Tϵ
. (181)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
8ϵ − 9

8ϵ − 3g(ηT , ηR)
Tϵ

. (182)

= Opt(
∏
M

(ϵ, Tϵ)) − 3
2ϵ − 3g(ηT , ηR)

Tϵ
. (183)

In the step from equation 178 to equation 179 we use that g(ηT , ηR) = TϵηR + (Tϵ−1)Tϵ

2 ηT |S̄|Rmax. Then, in
the last steps, we define ϵ1 and ϵ2. In the step from equation 179 to equation 180 we set ϵ1 = 3

8 ϵ. And in
the step from equation 180 to equation 181 we set ϵ2 = 3ϵ/(4|S̄|Rmax(Tϵ − 1)).

The above assumed that the algorithm did not fail, but we cannot guarantee this with probability 1 within
a number of steps that is polynomial in the input. We will show that we can upper bound the probability
of failure by δ. There are three reasons why the algorithm could fail.

1. First, we need to show that the transition functions of M̄Y are within ηT + ϵ2 of the transition func-
tions of M̄ωX

, with high probability. This is to ensure that, once all the abstract state-action
pairs are known, the loss of value because of an inaccurate transition model, V ∗,Tϵ

M̄Y
− V ∗,Tϵ

M is
within 2g(ηT + ϵ2, ηR) = 2TϵηR + (Tϵ − 1)Tϵ(ηT + ϵ2)|S̄|Rmax by Lemma 11. We can use the
martingale concentration inequality to choose a number of samples K1 so that the probability that
our transition estimate is outside the desired bound is less than δ

3|S̄||A| for every abstract state-
action pair if we sample each pair K1 times. By Lemma 10, we can guarantee this by using
K1 ≥ 2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]

( 3ϵ
4|S̄|Rmax(Tϵ−1) )2 = 32|S̄|2R2

max(Tϵ−1)2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]
9ϵ2 . Then, by applying the

Union Bound on all |S̄|A pairs, we have that the total probability that any transition function is
outside the desired bound is less than δ/3.
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2. Before we assumed that Rmax Pr(AM ) < ϵ1(= 3ϵ
8 ). Here we can show that after K2 Tϵ-step trials

where Rmax Pr(AM ) ≥ 3ϵ
8 , all the abstract state-action pairs are visited at least K1 times (become

known) with a probability of at least 1−δ/3 by using Hoeffding’s Inequality. Let Xi be the indicator
variable that is 1 if we visit an unknown abstract state-action pair in a trial, and 0 otherwise. For
the trials where

Rmax Pr(Xi = 1) ≥ 3ϵ

8
Pr(Xi = 1) ≥ 3ϵ

8 /Rmax,

we can use Hoeffding’s Inequality to establish an upper bound, we have:

Pr(
K2∑
i=1

((3ϵ

8 /Rmax) − Xi) ≥ K
2/3
2 ) = (184)

Pr(3ϵ

8
K2

Rmax
−

K2∑
i=1

Xi ≥ K
2/3
2 ) ≤ e−

2(K
2/3
2 )2

K2 ≤ e−
2(K

2/3
2 )2

K2 = e−2K
1/3
2 , (185)

Pr(3ϵ

8
K2

Rmax
− K

2/3
2 ≥

K2∑
i=1

Xi) ≤ e−2K
1/3
2 . (186)

After K2 exploring episodes we want
∑K2

i=1 Xi, the number of visits to unknown state-action pairs,
to be K1|S̄||A|. So we can choose K2 such that 3ϵ

8
K2

Rmax
− K

2/3
2 ≥ K1|S̄||A|, and e−2K

1/3
2 ≤ δ/3 to

guarantee that the probability of failing to explore enough is at most δ/3.

3. Finally, the actual return may be lower than the expected return when we perform a Tϵ-step trial
where we do not explore. We use Hoeffding’s Inequality to determine the number of steps K3 needed
to ensure that the actual average return is within ϵ/2 of Opt(

∏
M (ϵ, Tϵ)) − 3

2 ϵ − 3 g(ηT ,ηR)
Tϵ

. We need
to choose K3 so that the probability of obtaining an actual return that is smaller than the desired
Opt(

∏
M (ϵ, Tϵ)) − 2ϵ − 3 g(ηT ,ηR)

Tϵ
is at most δ/3 within K3 = Z|S̄|Tϵ exploitation steps, with some

number Z > 0. Let Xi denote the average return in the i-th exploitation step and µ the average
expected return in an exploitation step so that µ is at least Opt(

∏
M (ϵ, Tϵ)) − 3

2 ϵ − 3 g(ηT ,ηR)
Tϵ

. Then

Pr(
K3∑
i=1

(µ − Xi

Rmax
) ≥ K

2/3
3 ) ≤ e−2

(K
2/3
3 )2

K3 = e−2K
1/3
3 . (187)

This means that, with a probability of at most e−2K
1/3
3 , the average return for K3 exploitation steps

is more than Rmax
K

1/3
3

lower than µ:

Pr(
K3∑
i=1

(µ − Xi

Rmax
) ≥ K

2/3
3 ) ≤ e−2K

1/3
3 , (188)

Pr(K3
µ

Rmax
−

K3∑
i=1

Xi

Rmax
≥ K

2/3
3 ) ≤ e−2K

1/3
3 , (189)

Pr(K3µ −
K3∑
i=1

Xi ≥ RmaxK
2/3
3 ) ≤ e−2K

1/3
3 , (190)

Pr(µ −
K3∑
i=1

Xi

K3
≥ Rmax

K
1/3
3

) ≤ e−2K
1/3
3 . (191)

We can now choose Z, so that ϵ/2 ≤ Rmax

(Z|S̄|Tϵ)
1
3

and e−2(Z|S̄|Tϵ)1/3 ≤ δ/3, to get the desired result:
with probability at most δ/3 the obtained value will be more than ϵ/2 lower than the expected value.
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The probability of failure is thus at most 3 ∗ δ/3 = δ, and an average return at most 2ϵ + 3 g(ηT ,ηR)
Tϵ

lower
than Opt(

∏
M (ϵ, Tϵ)) will be obtained with a probability of at least 1 − δ.

E Simulator Data Collection

Here we assume that we have access to a simulator and use this in our procedure to give a guarantee in the
form of the abstract L1 inequality from equation 21. To some extent, this is not surprising, but to the best
of our knowledge, this is the first work that explicitly shows how to combine MBRL and abstraction using a
simulator. We assume that the simulator allows us to select (or move to) any state and draw a sample from
its transition function, which we call the independent samples assumption:
Assumption 1 (Independent samples). We assume we can obtain independent samples, e.g., for any state-
action pair (s, a), we can draw samples directly from its transition function T (·|s, a).

Algorithm 2 Procedure: MBRLAO
Input: M, ϕ, δ, ϵ, π
Ȳ = CollectSamples(M, ϕ, δ, ϵ, π)
The sampling results in sequences Ȳs̄,a, one for every
pair (s̄, a):
Ȳs̄,a = ϕ(s′(1)), · · · , ϕ(s′(m))
= s̄′(1), · · · , s̄′(m)

for all (s̄, a, s̄′) ∈ S̄ × A × S̄ do
T̄Y (s̄′|s̄, a) = 1

m

∑m
i=1 1{Ȳ

(i)
s̄,a = s̄′}

end for
M̄Y ≜ ⟨S̄, A, T̄Y , R̄, γ⟩
π̄∗

Y = Value Iteration(M̄Y )
Apply π̄∗

Y to M

Algorithm 3 CollectSamples with Simulator
Input: M, ϕ, δ, ϵ
κ = δ

|S̄||A|

m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 ⌉

for all (s̄, a) ∈ S̄ × A do
Ȳs̄,a = [ ]
xs̄,a = select a prototype state s ∈ s̄
for i = 1 : m do

s′ = Sample(T (·|xs̄,a, a))
Ȳs̄,a.append(ϕ(s′))

end for
end for
Return: all Ȳs̄,a

If a simulator of the MDP is available, this is a reasonable assumption. For every pair (s̄, a), the simulator
sampling procedure (Algorithm 3) selects a prototype xs̄,a ∈ s̄ from which to sample. We define a weighting
function ωX(s, a) that has a weight of 1 if s is the prototype xs̄,a and 0 otherwise:

∀(s̄,a),s∈s̄ ωX(s, a) ≜ 1{s = xs̄,a}. (192)

Then we use this ωX to define the abstract transition function T̄ωX
according to equation 10. T̄ωX

(s̄′|s̄, a) =∑
s′∈s̄′ T (s′|s = xs̄,a, a). This way, the samples we collect for one pair (s̄, a) are i.i.d. They are independent

because of Assumption 1 and identically distributed because we sample from the prototype. Because the
samples are i.i.d., we can use Lemma 1. We show that, with the simulator we can combine MBRL with
abstraction and still learn an accurate model. We can guarantee that T̄Y will be close to T̄ωX

, with a high
probability:
Theorem 5. Under assumption 1, following the procedure in Algorithm 1, with the data collection from
Algorithm 3 and inputs |S̄|, A, ϵ, and δ. For T̄Y constructed by the algorithm, we have that with probability
1 − δ, the following holds:

∀(s̄,a) ||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ. (193)

E.1 Proof of Theorem 5

Before starting with the actual proof, we first go over Algorithm 3 and give two lemmas the proof uses.

The agent will draw samples using the simulator as described in Algorithm 3. Since we assume we can sample
directly from the transition functions T (·|s, a), this algorithm loops over all pairs (s̄, a) and samples m times10

10The value of m in Algorithm 3 is chosen based on the results further along in this section.
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from each transition function. More formally, for every pair (s̄, a), the algorithm selects one prototype state
xs̄,a = s ∈ s̄. Then, it loops over every pair (s̄, a) and samples m transitions from T (·|xs̄,a, a). The set of
collected experiences for each abstract state-action pair (s̄, a) is represented by Ȳs̄,a, as defined by equation 15.

Given Ȳs̄,a, we define the learned model T̄Y (·|s̄, a) according to equation 16, T̄ωX
according to equation 19,

and ωX according to equation 192. It follows from Lemma 1 that we can derive a number of samples that
we require to guarantee that Pr(||T̄Y (·|s̄, a) − T̄ωX

(·|s̄, a)||1 ≥ ϵ) ≤ κ is true for inputs κ and ϵ:
Lemma 4. For inputs κ and ϵ (0 < κ < 1, 0 < ϵ < 2), we have that the following holds for
m ≥ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 :

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ κ. (194)

Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and PωX
≜ T̄ωX

(·|s̄, a). From
Lemma 1, we have that

Pr(||PY − PωX
||1 ≥ ϵ) ≤ (2|S̄| − 2)e− 1

2 mϵ2
. (195)

We need to select m such that κ ≥ (2|S̄| − 2)e− 1
2 mϵ2 :

κ ≥ (2|S̄| − 2)e− 1
2 mϵ2

(196)
κ

2|S̄| − 2
≥ e− 1

2 mϵ2
(197)

ln(κ) − ln(2|S̄| − 2) ≥ −mϵ2

2 (198)

mϵ2

2 ≥ ln(2|S̄| − 2) − ln(κ) (199)

m ≥ 2[ln(2|S̄| − 2) − ln(κ)]
ϵ2 (200)

Thus, if m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 we have

Pr(||PY − PωX
||1 ≥ ϵ) ≤ κ.

Using the Union bound, we can give a lower bound on the probability that T̄Y (·|s̄, a) and T̄ωX
(·|s̄, a) are ϵ

close for every (s̄, a):
Lemma 5. If

∀(s̄,a)
[

Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ)

]
≤ δ

|S̄||A|
(201)

then the following holds with a probability of at least 1 − δ:

max
(s̄,a)

[
||T̄Y (·|s̄, a) − T̄ωX

(·|s̄, a)||1
]

≤ ϵ. (202)

Proof. We define

∆s̄,a ≜ ||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1. (203)

Then Pr(max(s̄,a){∆s̄,a ≥ ϵ}) is the probability that ∆s̄,a ≥ ϵ for at least one abstract state-action pair.
From the union bound, it follows that Pr(max(s̄,a){∆s̄,a ≥ ϵ}) ≤ δ:

Pr(max
(s̄,a)

{∆s̄,a ≥ ϵ}) ≤
∑
s̄,a

Pr(∆s̄,a ≥ ϵ) (204)

≤
∑
s̄,a

δ

|S̄||A|
(205)

= δ. (206)
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It follows that Pr(max(s̄,a){∆s̄,a ≤ ϵ}) ≥ 1 − δ since Pr(max(s̄,a){∆s̄,a ≤ ϵ}) = 1 − Pr(max(s̄,a){∆s̄,a ≥ ϵ}).
Thus the probability that equation 202 holds is at least 1 − δ.

Now we are ready to proof Theorem 5:

Proof of Theorem 5. By Assumption 1, and the earlier assumption that |S| and |A| are finite, we have that
we can obtain m samples in finite time for every abstract state-action pair and any m > 0. Given the
inputs |S̄|, A, ϵ, and δ, Algorithm 3 sets m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 ⌉, where κ = δ
|S̄||A| . Then, for every (s̄, a), a

prototype state xs̄,a = s ∈ s̄ is selected. We use equation 192 to define ωX and equation 19 to define T̄ωX
.

For all (s̄, a), Algorithm 3 obtains a sequence Ȳs̄,a by sampling from the transition function from the prototype
state xs̄,a and Algorithm 2 constructs the empirical transition functions as in equation 16.

Given our choice of m and the inputs κ = δ
|S̄||A| and ϵ, it follows from Lemma 10 that

∀(s̄,a) Pr(||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≥ ϵ) ≤ δ

|S̄||A|
. (207)

By the union bound, we have that the following holds with a probability of at least 1 − δ:

∀(s̄,a) ||T̄Y (·|s̄, a) − T̄ωX
(·|s̄, a)||1 ≤ ϵ. (208)
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