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ABSTRACT
Cross-Entropy Method (CEM) is a gradient-free direct policy search

method, which has greater stability and is insensitive to hyper-

parameter tuning. CEM bears similarity to population-based evo-

lutionary methods, but, rather than using a population it uses a

distribution over candidate solutions (policies in our case). Usu-

ally, a natural exponential family distribution such as multivariate

Gaussian is used to parameterize the policy distribution. Using a

multivariate Gaussian limits the quality of CEM policies as the

search becomes confined to a less representative subspace. We

address this drawback by using an adversarially-trained hypernet-

work, enabling a richer and complex representation of the policy

distribution. To achieve better training stability and faster conver-

gence, we use a multivariate Gaussian CEM policy to guide our

adversarial training process. Experiments demonstrate that our ap-

proach outperforms state-of-the-art CEM-based methods by 15.8%

in terms of rewards while achieving faster convergence. Results

also show that our approach is less sensitive to hyper-parameters

than other deep-RL methods such as REINFORCE, DDPG and DQN.
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1 INTRODUCTION
In Reinforcement Learning (RL), Cross-Entropy Method (CEM) [24]

is a gradient-free optimization approach used to directly search in

the policy space. Different from value-based and policy gradient-

based approaches like Deep Q-Networks (DQN) [27], Asynchronous

Advantage Actor-Critic (A3C) [26], and Trust Region Policy Op-

timization (TRPO) [33], CEM has several advantages [21, 32, 36]:

1) it is easy to implement; 2) the evolutionary nature of CEM in

population selection leads to fast convergence and the sampling
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procedure is easy to parallelize for scalability; and 3) its training

is more stable and insensitive to hyper-parameters. However, the

performance of CEM is limited due to the inadequacy in policy dis-

tribution representation especially for large and complex problems.

To explain, CEM is similar in spirit to population-based search

methods such as evolutionary algorithms, but rather than using a

population it uses a distribution over candidate policies. This param-

eterized distribution, 𝑝 , is iteratively updated: during every training

iteration, a batch of policies are sampled from 𝑝 and are ranked

based on their episodic rewards (returns). Then the distribution 𝑝

is updated towards elite policies (those with high return). While

CEM has proven effective in many settings [19, 29, 36], a limitation

in the way it is employed in RL settings lies in the representation

of 𝑝: commonly, a natural exponential family distribution (NEF)

such as a multivariate Gaussian is used. This, however, imposes

severe constraints on the distributions that can be represented (e.g.,

only uni-modal), which limits the ability of 𝑝 to properly guide the

search. Mixture Gaussian [20] distribution can be used instead, but

it requires user-defined assumptions on the number of modes.

In this paper, we address the restrictive policy representation

issue typically observed in multivariate Gaussian CEM without

imposing any prior assumptions on the number of modes. We use a

hypernetwork [40] to represent the policy distribution, from which

the parameters/weights for a main policy network are sampled. We

optimize the policy distribution (hypernetwork) using an adversar-

ial process [14]. Further, we use the elite policies sampled from a

separate multivariate Gaussian CEM as supervision during adver-

sarial training. This hybrid combination of CEM guided adversarial

hypernetwork allows us to effectively learn the complex policy dis-

tribution (via hypernetwork), as well as achieve faster convergence

and reduce hyper-parameter sensitivity (via guiding multivariate

Gaussian CEM). Thus, our approach can achieve optimal results

faster with limited tuning. We list our main contributions below:

• Our key innovation is in using the adversarially-trained hypernet-

work architecture to address the issue of restrictive policy distri-

bution in CEM. Hypernetworks can model complex multi-modal

distributions [23, 28, 40] and provide better generalization by

introducing uncertainty in policy network weights [1], thereby,

more suitable to represent a policy distribution than multivariate

Gaussian. Existing CEM-based deep-RL techniques [19, 29, 36]

do not analyze the expressive power of CEM in representing the

policy distribution and only focus on addressing the issues of



hyper-parameter sensitivity and training instability. Whereas,

we aim to achieve both in our proposed work.

• In multivariate Gaussian CEM, the policy distribution updates

are skewed heavily towards the first few elite policies during the

early iterations, resulting in sub-optimal results. While one may

wonder if the multivariate Gaussian CEM is fit to guide the hyper-

network, we address this issue by using a replay buffer to store

only the elite policies from the guiding CEM and use them to train

the hypernetwork. The elite policies are also carefully assessed

before being added to the replay buffer to prevent premature

sub-optimal convergence. It also improves sample efficiency [29]

compared to discarding samples after every iteration.

• We provide a simple incremental approach to learn the policy

distribution without explicitly learning a Q-function or using

policy gradients which are highly sensitive to hyper-parameters.

The guiding CEM helps to achieve stable and faster convergence.

• We conduct experiments on discrete and continuous action prob-

lems. Results shows that: 1) our approach enables richer policy

representation, outperforming other state-of-the-art CEM-based

approaches: Qt-Opt [19], Qt-Opt+DDPG [36] at least by 15.8%

in rewards; 2) our approach achieves faster convergence than

Qt-Opt and Qt-Opt+DDPG (62.9% less training time) and is less

sensitive to hyper-parameters tuning than deep-RL methods such

as REINFORCE [41], DDPG [22] and DQN [27].

2 RELATEDWORK
In RL, the appeal of CEM-based direct policy search methods largely

comes from its hyper-parameter insensitive, stability and highly

parallelizable characteristics. Deep Q-learning methods [27] often

suffer from hyper-parameter sensitivity and instability across dif-

ferent training runs. Techniques to address these issues have been

proposed: [26, 39] reduce training instability to an extent; TRPO [33]

and Proximal Policy Optimization (PPO) [34] reduce variance in

policy gradient estimation; Deep Deterministic Policy Gradients

(DDPG) [22], Twin Delayed Deep Deterministic Policy Gradients

(TD3) [12], Soft Actor-Critic (SAC) [16] offer better training stabil-

ity; however, all of them have more room for improvement [36].

Researchers have used CEM [24] together with deep-RL tech-

niques to reduce hyper-parameter sensitivity and training instabil-

ity. CEM-RL [29] combines CEM and TD3. Qt-Opt [19] is a CEM

guided Q-learning method for continuous actions. In Qt-Opt, there

is no policy being learned directly and the role of CEM is only for ac-

tion selection based on the estimated Q-value. Qt-Opt+DDPG [36]

extends Qt-Opt by learning a policy to approximate the CEM action

selection process for reducing inference time. All of them use mul-

tivariate Gaussian to represent the CEM policy distribution. Our

method shares the idea of using CEM to guide the training process

from Qt-Opt, but, we use hypernetwork instead of multivariate

Gaussian. Unlike Qt-Opt and Qt-Opt+DDPG, our method does not

require a Q-function estimator as we update in the policy space

directly. Further, instead of using CEM for action selection as in

Qt-Opt, we use it to search the policy parameter space.

Multivariate Gaussian CEM policies tend to be easily trapped

in local optima due to their inability to handle multiple modes

and updates tend to skew towards lucky episodes during early

iterations. Some works aim to suppress this overly greedy and opti-

mistic update behaviour in CEM, such as applying noisy CEM [37]

and introducing a smoothing parameter while updating the dis-

tribution [6]. Another stream of work focuses on addressing the

fundamental bottleneck of representing and maintaining a complex

parametric distribution [20]. They use a multi-modal CEM with

mixture Gaussian models to alleviate the influence of elites in the

first few iterations. However, such multi-modal Gaussian mixture

may not outperform its uni-modal counterpart at all times [13], as

additional assumption on the number of components in the mixture

is needed. In our approach, we use hypernetwork (without assump-

tions on modality) to represent the complex policy distribution.

Adversarially-trained hypernetworks were used for image clas-

sification [18], where the hypernetwork generates weights for mul-

tiple classification models. In our work, we use an adversarially-

trained hypernetwork to generate weights for policy network. How-

ever, unlike the supervised image classification problem, in our case,

there is no ground-truth available and we rely on elite samples from

a separate multivariate Gaussian CEM to guide the training process.

3 MULTIVARIATE GAUSSIAN LIMITATION
Existing theory on CEM applied in combinatorial optimization prob-

lems [5, 25, 31] show that CEM can find the optimal solution when

sampling distribution converges to a unit mass with probability of 1.

These works use the Bernoulli distribution, which can be viewed as

a special case of bi-modal or joint distribution of two different Dirac

delta functions [2] to sample discrete binary solutions. CEM-based

approaches [19, 29, 36] in RL, however, use uni-modal multivariate

Gaussian distribution while searching for policy parameters. The

constrain of parametric distribution becomes more pronounced

when the parameters are continuous, for example, neural network

policies whose parameters, i.e., weights are continuous. In addition

to the restrictive representation, the rare-event probability maxi-

mization nature of CEM updates causes the policy distribution to

skew heavily towards the first few elite policies determined dur-

ing the early iterations. This behaviour quickly limits the search

space to a much smaller neighbourhood, allowing CEM to be easily

trapped in a local optimum, mainly due to the lack of exploration

and the inability to handle multiple modes [11].

To illustrate these shortcomings, a maximization problem is

performed on (the negative of) Schwefel function [35] using mul-

tivariate Gaussian CEM. The function 𝑓 (𝑥) is shown in Fig. 1a

with parameters 𝑥1 and 𝑥2, where black regions represent maxima

and dark red regions represent minima. 𝑓 (𝑥) is non-convex and

complex, with multiple geometrically distant local maxima. Fig. 1b

shows the contour plots across different CEM update iterations.

The global optimum is marked with yellow star and the blue dots

represent sampled values from the distribution. The (uni-modal)

multivariate Gaussian distribution quickly collapses into a narrow

distribution along the 𝑥2-axis during the 10th iteration. This quickly

eliminates any further exploration along 𝑥2, and subsequently con-

verges to a point mass distribution at a local optimum within 15

iterations. Further, multivariate Gaussian assumes i.i.d (independent

and identically distributed) parameters, implying that the conver-

gence favours a parameter value which leads to high 𝑓 (𝑥) score



(a) Schwefel Objective Function

(b) Uni-modal Multivariate Gaussian

(c) Multi-modal Hypernetwork

Figure 1: Learning the Schwefel Objective Function using Multivariate Gaussian CEM Vs Hypernetworks CEM-AH

independent of other parameters. In Fig. 1b, this means that the rel-

atively high 𝑓 (𝑥) scores when 𝑥1 ∈ [375, 425] and 𝑥2 ∈ [−200, 200]
will be eliminated early from candidate solutions and will not be

explored. The low 𝑓 (𝑥) scores from 𝑥1 ∈ [−425,−375] decreases
the favourability of selecting 𝑥2 ∈ [−200, 200].

Fig. 1c shows the contour plots when using hypernetwork (our

proposed approach CEM-AH) instead of multivariate Gaussian. Our

approach does not require assumptions on the number of modes

or the underlying probability distribution. We see that multiple

modes can be maintained. Across different iterations, the sampled

values are concentrated near different local maxima and slowly

move towards the global maximum (yellow star) by iteration 99.

4 METHODOLOGY
We first describe our guiding multivariate Gaussian CEM in Sec. 4.1.

We then explain our adversarially-trained hypernetwork and how

CEM
1
is used to guide the adversarial training process in Sec. 4.2.

4.1 Guiding Cross-Entropy Method (CEM)
CEM tries to optimize the policy’s parameters towards those with

higher episodic rewards. Each policy parameter is sampled from

a distribution and it is customary that these distributions belong

to the same family (we collectively call the set of distributions as

policy distribution). CEM searches the policy’s parameter space by

sampling multiple policies from these distributions. During CEM

update, these distributions are updated towards the elite policies, i.e.,

policies with higher episodic rewards. Specifically, we use neural

network policies, whose parameters
2
are continuous in nature.

The policy parameters represented using 𝝓 ⊂ R𝑑 is a vector of

dimension 𝑑 = |𝑠 | × |𝑎 |, where |𝑠 | and |𝑎 | denote the dimensions

of state and action spaces. The parameters are sampled from a

multivariate Gaussian distribution, 𝝓
i.i.d.∼ N (`, Σ), where ` and

Σ represent the mean and covariance matrices. We assume Σ to

be a diagonal matrix, signifying independence between each uni-

modal Gaussian. Every CEM policy 𝜋
𝝓
CEM is evaluated based on

the episodic rewards obtained using the policy. After ranking the

1
We refer to the guiding multivariate Gaussian CEM (Alg. 1) as CEM and our proposed

approach as CEM-AH.

2
Since we are referring to the context of neural networks, we use the terms “parameter”

and “weight” interchangeably in the paper.

policies, the elite policies 𝝅CEM[elite] are identified by choosing the
top 𝜌 percentile (or the elite fraction) of the sorted list of policies,

based on which the multivariate Gaussian distribution is updated.

Algorithm 1 shows the detailed CEM training process. We first

initialize a 𝑑-dimensional Gaussian distribution N (`, Σ) with zero

mean and unit covariance. At each iteration 𝑖 (Line 2), the param-

eters 𝝓𝑖 are sampled from the policy distribution and added to

the population (Line 3). For each policy 𝜋
𝝓𝑖

CEM, corresponding to

the parameters 𝝓𝑖 , we sample actions and obtain rewards until

termination (Lines 4-7). The function 𝜋
𝝓𝑖

CEM is a non-linear com-

bination of weights and the corresponding state 𝑠 , analogous to a

neural network. For a given state 𝑠 , 𝜋
𝝓𝑖

CEM outputs continuous val-

ues. Depending on the implementation setup, the output could be

interpreted as control values for all actions (in continuous control

tasks) or probability distribution over actions (stochastic policy for

discrete actions). Thus, the policy can be adapted for both discrete

and continuous actions tasks (see experiments in Sec. 5).

The total episodic reward 𝑅𝑖 for the policy 𝜋
𝝓𝑖

CEM is recorded

(Line 7). A total of 𝑁 episodes are sampled, each corresponds to

a different policy. The policies are sorted based on 𝑅 ∈ R and

the 𝜌 top-percentile are marked as elite policies (Lines 8-9). The

policy distribution is updated based on the mean and covariance of

Algorithm 1: Cross-Entropy Method (CEM)

Input: population size 𝑁 , elite fraction 𝜌 , CEM policy 𝜋
𝝓
CEM (𝑎 |𝑠)

Initialize: 𝝁 ←− 0
𝑑 , 𝚺←− 𝑑𝑖𝑎𝑔 (1)𝑑×𝑑

1 Population Φ = {}
2 for 𝑖 = 1→ 𝑁 do

/* Sample policy parameters 𝝓𝑖 */
3 𝝓𝑖∼N (`𝑖 , Σ𝑖 ) , Append 𝝓𝑖 to Φ

/* Sample episodes following policy 𝜋
𝝓𝑖
CEM */

4 while not terminal state do
5 𝑎 ←− 𝜋

𝝓𝑖
CEM (𝑠)

6 Observe 𝑠′ and obtain reward 𝑟
7 𝑅𝑖+ = 𝑟

/* Filter the elite policy parameters */
8 𝐼 ← {sort(R)𝑖 : 𝑖 ∈ [1, . . . , 𝑘 ] }, 𝑘 = 𝜌 top-percentile

9 𝝅CEM[elite] = {𝜋
𝝓𝑖
CEM, 𝑖 ∈ 𝐼 }

/* Update CEM policy using elite policy parameters */

10 𝝁 ← 1

𝑘

∑

𝑖∈𝐼𝝓𝒊

11 𝚺← diag(var𝑖∈𝐼 (𝝓𝒊))



(a) CEM-AH Architecture (b) Weights Generation by Hypernetwork

Figure 2: CEM-AH: Adversarially-Trained Hypernetwork

elite policies (Lines 10-11). While Algorithm 1 shows the training

process, during evaluation/testing, we sample one set of parameters

𝜙𝑡𝑒𝑠𝑡 per episode, and use the policy 𝜋
𝝓𝑡𝑒𝑠𝑡

CEM for action selection.

4.2 CEM Guided Adversarial Hypernetwork
(CEM-AH)

Due to the uni-modal assumption in multivariate Gaussian, the

CEM approach (Sec. 4.1) heavily constrains the policy distribution

representation. Further, the rare-event probability maximization

nature of CEM updates is overly greedy and optimistic in favour of

lucky episodes. These often result in CEM being heavily influenced

by elite policies during early iterations, amplifying the likelihood

of converging to different local optima across different runs.

Instead of multivariate Gaussian, we use a hypernetwork [15]

to represent a complex multi-modal policy distribution. The main

idea is to use a neural network (hypernetwork), to generate weights

for another network. In our approach, the hypernetwork is used

to generate weights for a main (policy) network, bearing analogy

to sampling a policy from a distribution. Hypernetwork can learn

high-dimensional distributions mapped from a lower-dimensional

weight space [7, 38] and can be used to model complex multi-modal

weight posteriors [23, 28, 40]. Such flexibility allows us to maintain

multiple modes in the policy distribution across updates, thereby

reducing the influence of lucky episodes during the early iterations

and encouragingmore exploration. Also, adopting such a generative

hypernetwork model enables the use of ensembles during testing,

where we use a collection of policies which are sampled to obtain

a reliable action. Ensembles have been widely shown to provide

stabilizing effect and reliable performance gain [8, 10, 17].

We adopt an adversarial training process for the hypernetwork.

Unlike typical Generative Adversarial Network (GAN) [14] training,

the challenge in RL setting is the unavailability of ground-truth.

To address this, we use the actions from multivariate Gaussian

CEM elite policies described in Sec. 4.1 as supervision to guide the

training. This avoids learning Q-values or using policy gradients,

both of which require extensive hyper-parameter tuning. Thereby,

the proposed CEM guided Adversarial Hypernetwork (CEM-AH)

enables faster and stable convergence and is less sensitive to hyper-

parameters while retaining richness in policy distribution.

The architecture for our proposed CEM-AH is shown in Fig. 2a.

CEM-AH is implemented as a GAN, consisting of generator 𝐺 and

discriminator 𝐷 components. The generator consists of two neural

networks, the hypernetwork and the main policy network. The

hypernetwork, denoted by ℎ(\ |𝑧;𝛼) is conditioned by Gaussian

input noise 𝑧 along with network parameters 𝛼 , and represents

the policy distribution. It generates the network weights \ for the

(main) policy network, denoted by 𝜋 (𝑎 |𝑠 ;\ ). The policy network in

turn predicts the action probabilities for a given state 𝑠 .

Fig. 2b shows how the hypernetwork ℎ(\ |𝑧;𝛼) generates the
weights \ for a policy network 𝜋 . The hypernetwork consists of a

noise encoder (with 4 dense layers) which takes an input Gaussian

noise vector 𝑧 of size 100. The output of the noise encoder is then

passed through two weight-generators (𝑤1,𝑤2) which generate the

weights for the policy network 𝜋 . The policy network 𝜋 consists of

an input layer (with state space dimension |𝑠 | nodes), a hidden dense
layer with 𝑁ℎ = 200 nodes and an output layer (with action space

dimension |𝑎 | nodes). All layers are followed by RELU activation

except for the last layer which uses tanh activation.𝑤1 generates

weights for the connections between the input layer and the hidden

layer and 𝑤2 generates weights for the connections between the

hidden layer and the output layer. The policy network 𝜋 is then

used to infer action probabilities for a given state 𝑠 . We conduct ex-

periments (see Fig. 6a and 6c) using 2 neural network architectures

in different sizes: a 3-layer policy network as shown in Fig. 2b as

well as a 2-layer policy network, for which we remove the hidden

layer in the policy network as well as𝑤2 in the hypernetwork. We

then choose the architecture which gives the best results in Sec. 5.

The training data for CEM-AH is a set of tuples of the form

𝑥 = ⟨𝑠, 𝑎⟩. The discriminator 𝐷 (𝑥 ; 𝛽), with parameters 𝛽 is tasked

to identify whether the tuple 𝑥 is real or fake. CEM policy 𝜋CEM
(see Sec. 4.1) is used to guide the training of CEM-AH. For this, real

tuples are generated using Algorithm 1, i.e., 𝑥real = ⟨𝑠, 𝜋CEM (𝑠)⟩.
The fake tuples are produced using randomly sampled policies from

the hypernetwork𝑋fake = ⟨𝑠, 𝜋 (𝑠 ;ℎ(𝑧))⟩ with the same set of states

used to generate the real tuples. Note that for a given state 𝑠 , both

𝑥real and 𝑥fake will be generated and used during training.

4.2.1 Training Procedure for CEM-AH. Algorithm 2 shows the

training routine of CEM-AH. As a part of this training process,

we sequentially train the guiding CEM and CEM-AH. During every

training iteration (Line 3), we first learn and update our guiding

CEM policy, 𝜋CEM (Line 4) by running Algorithm 1 for a given set

of initial states. During this process, we create several real tuples

⟨𝑠real, 𝜋CEM (𝑠real)⟩ using the states 𝑠real observed and actions sam-

pled 𝜋CEM (𝑠real). These real tuples are sampled only from the elite



Algorithm 2: CEM-AH

Require: hypernetwork ℎ (\ |𝑧;𝛼) , policy network 𝜋 (𝑎 |𝑠 ;\ ) ,
discriminator 𝐷 (𝑥 ; 𝛽) , standard Gaussian N𝑧 (0, 1)

Initialize: 𝛼 , 𝛽
Input: NTrain,𝑀 , [, G-MSE, D-Adv, G-Adv

/* Main Function to train the hypernetwork */
1 Function Main:
2 Φbuf = {}
3 for 𝑡 = 1→ NTrain epochs do
4 Update 𝜋CEM using Algorithm. 1

/* Add high reward CEM real tuples to replay buffer */
5 if R𝑖 >= RΦbuf then
6 Φbuf = {Φbuf ∪ ⟨𝑠real, 𝜋CEM (𝑠real) ⟩}[:capacity]

/* Pre-train generator */
7 for G-MSE epochs do
8 Sample a set of 𝑆real states from Φbuf
9 𝑋real ←− {⟨𝑠real, 𝜋CEM (𝑠real) ⟩, ∀𝑠real ∈ 𝑆real }

10 𝑋fake ←− GenerateFake(𝑆real, 𝑀)
11 𝐿pre ←−MSE(Xreal, 𝑋fake | 𝑠real ∈ 𝑆real)
12 𝛼 ←− 𝛼 − [∇𝐿pre

/* Adversarial Training for Discriminator */
13 for D-Adv epochs do
14 Sample a set of 𝑆real states from Φbuf
15 𝑋real ←− {⟨𝑠real, 𝜋CEM (𝑠real) ⟩, ∀𝑠real ∈ 𝑆real }
16 𝑋fake ←− GenerateFake(𝑆real, 𝑀)

17
∇𝐿𝐷 ←− Ereal∇𝛽 [log𝐷𝛽 (𝑋real) ]

+ Efake∇𝛽 [log(1 −𝐷𝛽 (𝑋fake) ]
18 𝛽 ←− 𝛽 − [∇𝐿𝐷

/* Adversarial Training for Generator */
19 for G-Adv epochs do
20 Use 𝑋fake generated during discriminator training

21 ∇𝐿𝐺 ←− Efake∇𝛼 [− log(𝐷𝛽 (𝑋fake) ]
22 𝛼 ←− 𝛼 − [∇𝐿𝐺
23 return

/* Function to generate fake tuples using hypernetwork */
24 Function GenerateFake(𝑆real ,𝑀):
25 Split 𝑆real = {𝑆𝑖real, 𝑖 = 1, . . . , 𝑀 }
26 𝑋fake = {}
27 for 𝑖 = 1→ 𝑁 do
28 𝑖 = 1, . . . , 𝑀
29 𝑧𝑖 ←− sample noise, 𝑧𝑖 ∼ N𝑧 (0, 1)
30 𝑋fake←− 𝑋fake∪ ⟨𝑠real, 𝜋𝑖 (𝑠real ;ℎ (𝑧𝑖 )) ⟩, ∀𝑠real ∈ 𝑆𝑖real
31 return 𝑋fake

policies 𝝅CEM[elite] with high episodic rewards (top 𝜌 percentile of

policies). These real tuples are then added to a replay buffer Φbuf
(Line 5-6). It is to be noted that, for a given train iteration 𝑡 , the real

tuples are added to the replay buffer only when the mean reward of

the elite policies 𝝅CEM[elite] used to sample these tuples is greater

than or equal to mean reward of the policies for the tuples already

present in Φbuf . Such a selective addition of real tuples provides

CEM-AH a diverse buffer of real (elite) tuples to learn from even

when the guiding CEM converges to a narrow policy (and/or a local

optima). Using a replay buffer also improves sample efficiency by

re-using previously generated elite tuples without discarding them

immediately. Φbuf follows first-in-first-out ordering by removing

old tuples when its maximum capacity is reached.

We pre-train the generator in Lines 7-12. For this, we sample a

set of real states 𝑆real from Φbuf (Line 8) from which we create a

set of real tuples 𝑋real using the guiding CEM policy 𝜋CEM (Line

9). We also create a set of fake tuples 𝑋fake (Line 10). To gener-

ate fake tuples, we use the function GenerateFake (Lines 24-31).

Here, we divide the set of real tuples 𝑆real into 𝑀 sets. We create

𝑀 different policy networks 𝜋𝑖 , 𝑖 = 1, . . . , 𝑀 by feeding𝑀 different

noise vectors 𝑧𝑖 to the hypernetwork ℎ(𝑧𝑖 ). Each policy network 𝜋𝑖
generates fake tuples ⟨𝑠real, 𝜋𝑖 (𝑠real ;ℎ(𝑧𝑖 ))⟩ for a set of 𝑆𝑖real states.
Once the fake tuples are generated, we use Mean Squared Error

(MSE) loss between the real and corresponding fake tuples, i.e., the

error between 𝜋CEM (𝑠real) and 𝜋 (𝑠real ;ℎ(𝑧)) to update the genera-

tor parameters with learning rate [ (Lines 11-12). Pre-training the

generator every time the replay buffer Φbuf changes after updat-

ing the guiding 𝜋CEM stabilizes the adversarial training process, as

demonstrated by our experimental results in Fig. 6h.

During adversarial training, the discriminator𝐷 and generator𝐺

are trained one after the other. The discriminator (Lines 13-18), pa-

rameterized with 𝛽 is trained using the cross-entropy loss (Eqn. 1)

which maximizes the log probability for categorising the corre-

sponding real tuples 𝑋real and fake tuples 𝑋fake (generated using

Lines 24-31). For stable convergence, the discriminator is updated

more times than the generator, i.e., D-Adv > G-Adv during initial

training. We also add a decaying noise to discriminator input to

improve its generalization capability [30]. The generator is trained

(Lines 19-22) using the loss 𝐿𝐺 (Eqn. 2), which is based on how well

the discriminator identifies real and fake tuples.

∇𝐿𝐷 ←− Ereal∇𝛽 [log𝐷𝛽 (𝑋real)]
+ Efake∇𝛽 [log(1 − 𝐷𝛽 (𝑋fake)] (1)

∇𝐿𝐺 ←− Efake∇𝛼 [− log(𝐷𝛽 (𝑋fake)] (2)

The attentive reader may wonder how the multivariate Gaussian

𝜋CEM is fit to guide CEM-AH, as it suffers from drawbacks men-

tioned earlier. The reason is that the replay buffer Φbuf is only filled

with global elite samples from 𝝅CEM[elite] encountered throughout
the training process when the distribution is being updated. We

reiterate that the generative hypernetwork ℎ(\ |𝑧;𝛼) learns a map-

ping from a sampled noise vector 𝑧𝑖 ∼ N𝑧 (0, 1) to a target policy

distribution such that the sampled policies produce optimal actions

(equivalent to those suggested by 𝝅CEM[elite] ). This allows multiple

high reward policies to be captured, or in other words, it learns

multiple ways of accomplishing a task. Such an approach is differ-

ent from the uni-modal guiding CEM (Algorithm 1), which learns a

single policy (or single way) towards convergence. Learning mul-

tiple high reward policies in CEM-AH allows more robust policy

behaviour by using a bagging ensemble method during testing.

4.2.2 Testing (Evaluating) CEM-AH policy. For evaluating the learnt
CEM-AH policy, we will only use the generator component of CEM-

AH after it is trained using Algorithm 2. A batch of 𝐾 policies is

randomly sampled Π𝑖 = {𝜋𝑖 (𝑎 |𝑠;\𝑖 );\𝑖 = ℎ(𝑧𝑖 ), 𝑖 = 1, . . . , 𝐾} by
feeding𝐾 random noise vectors 𝑧𝑖 , 𝑖 = 1, . . . , 𝐾 to the hypernetwork

ℎ of the generator. The final policy is obtained by implementing an

ensemble of the 𝐾 policies, 𝜋CEM−AH = ensemble(Π𝑖 ). We define

ensemble(Π𝑖 ) as softmax[∑𝑖 𝜋𝑖 (𝑎 |𝑠)] for discrete action problems

and
1

𝑀

∑
𝑖 𝜋𝑖 (𝑎 |𝑠) when continuous actions are considered. While

we use simple averaging as the ensemble method, more sophisti-

cated techniques such as weighted average and ensemble networks

could be used. The spirit is to show the complementary benefit of

learning a distribution of policies, which could be sampled cheaply

and be collectively used to boost the test performance.



5 EXPERIMENTS

(a) Maze (b) Reacher (c) Ant (d) Walker

Figure 3: Environments

We conduct experiments on discrete and continuous action prob-

lems. For discrete actions, we use a fully observable maze [3] with

sparse rewards setting. The maze is a 7×7 grid as shown in Fig. 3a,

with state space dimension of 243 and action space dimension of

3. The agent in red is required to reach the goal (shown in green).

The state encodes information about the presence of a wall, empty

space, presence of the agent/goal, color and agent’s orientation on

different channels of the image grid. The agent’s actions include

moving forward, turning left and right, each having a small nega-

tive reward of −0.1. Reaching the goal gives a large reward of 1000.

We set the maximum time-steps per episode to be 10, 000.

For continuous actions, we use reacher and two environments

(ant, walker2d) from Pybullet-Gym [9]
3
, all of which have dense

rewards. For the reacher environment, a robotic arm with 2 joints

is centered in the environment and the goal is to move the end-

effector (top end of the arm) to reach the yellow target (shown in

Fig. 3b). The reward is calculated using the inverse distance between

end-effector and target at every step, with a maximum of 100 time-

steps per episode. The state space dimension is 8, consisting of 𝑥 , 𝑦

coordinates of end-effector’s initial and target locations. The action

space dimension is 2, representing a continuous angle value for the 2

joints. For the ant and walker environments, we use Pybullet-Gym’s

default settings with maximum of 1000 time-steps per episode. Both

having the same objective of controlling an agent to walk as fast as

possible. Ant environment’s state and action dimensions are 28 and

8 respectively. For walker, the dimensions are 22 and 6 respectively.

We compare CEM-AH with the guiding multivariate Gaussian

CEM (Algorithm 1), state-of-the-art CEM-based approaches Qt-

Opt [19], Qt-Opt+DDPG [36]. Other baseline RL techniques for

both discrete and continuous problems such as REINFORCE (im-

plemented using a policy network) [41], DDPG [22], DQN [27] are

also selected to compare hyper-parameter sensitivity and stability.

We run all the experiments for 50𝑘 episodes. For fair comparison,

we use a 3-layer (1 input, 1 hidden, 1 output) or 2-layer (1 input, 1

output) neural network architecture, similar to the policy network

architecture shown in Fig. 2b for all the approaches, whichever gave

better results during hyper-parameter tuning (Sec. 5.2). For DDPG,

Qt-Opt and Qt-Opt+DDPG, which are typically used for continuous

action problems, a softmax activation is applied to the outputs in

maze (discrete). We do not apply DQN on the continuous tasks

(reacher, ant and walker). For CEM, 𝑁=100, 𝜌=90, for CEM-AH,

𝑀=100, 𝐾=10, |Φbuf |=108 and |𝑆real |=5𝑘 .
We measure the mean episodic rewards during training as well

as the test performance (averaged over 10 episodes) of the learned

3
This is an open source implementation of Roboschool and MuJoCo environments.

policy after every training iteration. The purpose is to compare the

actual quality of the learned policy and the rate of convergence,

since most algorithms have different exploration and exploitation

strategies. For example, REINFORCE and DQN use epsilon-greedy

strategy for exploration during training, while they use absolute

greedy policy during testing; DDPG and Qt-Opt+DDPG use a Q-

network with output noise for exploration during training while a

separate actor network is used during testing.

5.1 Performance Comparison of CEM-AH4

(a) 2k Episodes

(b) 50k Episodes

Figure 4: Weight distribution of CEM-AH vs CEM

Fig. 5 shows the mean episodic rewards during training and

testing with the best performing set of hyper-parameters for each

method, along with the standard deviation (shaded region) across 3

runs. Fig. 5a and 5b show the results for the maze problem. We see

that CEM-AH outperforms CEM, especially during testing. CEM-

AH allows richer policy representation, and along with the ensem-

ble inference method (Sec. 4.2.2), it results in better performance.

To analyze the policy distribution learnt by CEM and CEM-AH, we

collect 100 samples from each distribution for the maze problem

and show the histogram plot for 3 randomly selected policy weights

in Fig. 4. For better visibility, we discretized the sampled weights

through binning. The dashed lines represent the approximate dis-

tribution shape by fitting the sampled values using kernel density

estimation. In Fig. 4a, we notice that CEM quickly converges to a

narrow distribution within 2𝑘 episodes, while CEM-AHmaintains a

complex and well-spread distribution. Unlike CEM, which directly

uses the elite policy parameters to update its distribution, CEM-

AH uses state-action tuples to update its distribution (represented

by the hypernetwork) by backpropagation via the sampled policy

network. The use of such a generative network allows for more

complex distribution to be learned. In Fig. 4b, after 50𝑘 training

episodes, most sampled weights converge to a narrow distribution

in CEM-AH. However, we can also observe other distributions such

as mixtures of Dirac deltas for Weight 1 shown in Fig. 4b. This sup-

ports our claim to remove the uni-modal distribution assumption

that is followed by most CEM-based approaches, retaining better

parameter exploration especially during the early stages of training.

Fig. 5a and 5b also show that CEM-AH has a significantly more

stable training process than Qt-Opt and Qt-Opt+DDPG, which

were originally designed for handling continuous actions. Both

4
The source code can be found at https://github.com/tangshiyuan/cem-ah



(a) Maze (Train) (b) Maze (Test) (c) Reacher (Train) (d) Reacher (Test)

(e) Ant (Train) (f) Ant (Test) (g) Walker2D (Train) (h) Walker2D (Test)

Figure 5: Performance Comparison on: (a-b) Maze; (c-d) Reacher; (e-f) Ant; (g-h) Walker2D in Pybullet-Gym environment

methods sample actions from a multivariate Gaussian distribution

and perform updates based on the Q-values approximated using a

Q-network. Their noisy training process can be attributed to the

change in the network inputs for discrete actions. For discrete ac-

tions, we concatenate the action probabilities instead of continuous

action values along with the state to be given as input to the Q-

network. This stochastic nature of the policy for discrete actions

makes Q-network training difficult. Qt-Opt+DDPG has a slightly

more stable testing process as it uses another policy network for

predicting the actions. We can observe the highly noisy training

process for REINFORCE, DDPG and DQN. DDPG obtains better

rewards during training, however during testing, DDPG achieves a

higher reward of 931.315 only after 38𝑘 training episodes (28 hours)

while CEM-AH converges faster and obtains a reward of 884.55

within 4𝑘 episodes (4.5 hours). After 50𝑘 episodes, CEM-AH obtains

888.66, DDPG 909.90 (drops slightly), REINFORCE 622.30, DQN

805.47, Qt-Opt 724.47 and Qt-Opt+DDPG 767.54.

Fig. 5c and 5d, we show the results on reacher. The training

process in this dense reward setting is less noisy than the maze task

across all methods. We again notice fast convergence characteristics

of CEM-AH (in less than 18𝑘 episodes) with its test performance

outperforming that of CEM during early iterations. The similar

performance of CEM and CEM-AH after convergence is because

in reacher, the policy search space is low-dimensional and less

complex resulting in a similar optima. Qt-Opt and Qt-Opt+DDPG

consistently perform lower and obtain a reward of 52.67 and 72.06

at the end of 50𝑘 episodes during testing. Similar to the maze en-

vironment, CEM-AH outperforms REINFORCE and DDPG. The

performance of REINFORCE and DDPG differs across runs result-

ing in a larger standard deviation. Further, convergence in DDPG

is very slow achieving 60.79 only at the end of 50𝑘 episodes while

5
The values reported are the mean episodic rewards obtained during testing.

CEM-AH achieves 72.61 within 18𝑘 episodes. DDPG is also highly

sensitive to hyper-parameters as shown by our results in Fig. 6f.

We show the results on ant in Fig. 5e and 5f, and walker in Fig. 5g

and 5h. CEM and CEM-AH outperform other methods significantly.

Both environments have a higher dimensional search space than

reacher, resulting in slow convergence while the performance still

improves after 50𝑘 episodes. Compared to reacher, both ant and

walker control the walking movement of the agent and are more

unstable. Hence, the performance gains between train and test

(bagging through ensemble inference) are more obvious. For ant,

the test rewards for CEM, CEM-AH, Qt-Opt, Qt-Opt+DDPG, REIN-

FORCE, DDPG at the end of 50𝑘 episodes are 739.59, 845.51, 509.13,

8.49, 85.34 and 242.316 respectively. For walker, the test rewards

are 550.78, 640.54, 65.31, 36.57, 7.10 and 19.52 respectively. Overall,

CEM-based methods (including CEM-AH) achieve better and more

reliable performance in both discrete and continuous tasks.

Table 1 shows the training and test time per episode for all

methods on maze and reacher
7
. We use a workstation with dual

core Intel Xeon Gold 6148 CPU @ 2.40GHz, and a Tesla V100 GPU.

While CEM-AH takes a slightly longer computation time per episode
(maze: 4.03𝑠 , reacher: 4.32𝑠 , ant: 6.70𝑠 , walker: 11.82𝑠) than CEM,

REINFORCE, DDPG and DQN, it achieves faster convergence as

early as 4𝑘 episodes in maze and 18𝑘 in reacher. Training time can

still be improved by parallelizing the sampling process in CEM-AH.

The testing time (maze: 2.79, reacher: 0.47, ant: 2.02𝑠 , walker: 2.07𝑠)

remains comparable as the policy sampling process in CEM-AH is

lightweight. Qt-Opt and Qt-Opt+DDPG take a much longer training

time due to the expensive CEM sampling process during action

selection. While the testing time remains long for Qt-Opt due to

the same sampling process, it is much shorter for Qt-Opt+DDPG

as it uses a learned policy network (the actor network) instead.

6
DDPG result is inline with the findings of Pybullet-Gym benchmark [4].

7
Refer Appendix B for the time complexity on all environments.



(a) CEM-AH (Maze) (b) DQN (Maze) (c) CEM-AH (Reacher) (d) REINFORCE (Reacher)

(e) DDPG (Maze) (f) DDPG (Reacher) (g) Ablation (Train) (h) Ablation (Test)

Figure 6: Hyper-parameter sensitivity: (a, b, e) Maze; (c, d, f) Reacher; (g-h) Ablation Study for Maze

5.2 Hyper-parameters & Ablation Study
We perform hyper-parameter tuning in maze and reacher en-

vironments (as shown in Fig. 6) with respect to learning rate

∈ {0.001, 0.005, 0.0001}, batch size ∈ {50, 100, 1000}, and number

of neural network layers ∈ {2, 3}. In Fig. 6a, 6b and 6e, we show

the test performance for CEM-AH, DQN and DDPG on maze for

different hyper-parameter configurations. CEM-AH performs con-

sistently better than DQN. We notice in most cases DQN failed

abruptly for sparse rewards scenario. For DDPG, although some

hyper-parameters can obtain higher rewards than CEM-AH, con-

vergence is very slow. In Fig. 6c, 6d and 6f, we show the test results

for CEM-AH, REINFORCE and DDPG on reacher. We can see rela-

tively stagnant or slow learning process for both REINFORCE and

DDPG in undesired hyper-parameter configurations. DDPG learns

only with a 3-layer network, however, its convergence speed varies

significantly with respect to different configurations. In contrast,

CEM-AH is able to converge consistently faster than the other

methods. CEM-AH performs best when it uses a 2-layer network

with batch size of 100 and a learning rate (using Adam optimizer) of

0.0001. The 2-layer CEM-AH configuration performs better than the

3-layer CEM-AH configuration because of the guiding CEM’s per-

formance, which is restricted by the sizes of state and action spaces.

Table 1: Train & Test Time Per Episode

Method Train (s) Test (s)

CEM 0.84 ± 0.13 0.84 ± 0.30

CEM-AH 4.03 ± 1.60 2.79 ± 0.48

REINFORCE 3.85 ± 0.37 3.64 ± 0.20

Maze DQN 2.18 ± 0.14 1.95 ± 0.79

DDPG 2.67 ± 0.72 2.55 ± 0.51

Qt-Opt 19.04 ± 24.36 11.54 ± 4.46

Qt-Opt+DDPG 24.62 ± 36.90 5.32 ± 2.93

CEM 0.03 ± 0.01 0.03 ± 0.31

CEM-AH 4.32 ± 0.95 0.47 ± 0.54

Reacher REINFORCE 3.79 ± 0.22 0.35 ± 0.47

DDPG 3.33 ± 0.11 0.30 ± 0.05

Qt-Opt 6.14 ± 0.65 2.91 ± 0.73

Qt-Opt+DDPG 6.47 ± 0.55 0.33 ± 0.01

However, we can observe that with the same network size, the

performance of CEM-AH is consistent and insensitive to learning

rate and batch size, and would converge to a similar performance.

We also performed ablation study for CEM-AH in Fig. 6g and 6h

on maze environment. We ran two different training processes, one

without pre-training and another without the discriminator. CEM-

AH obtains slightly better results than CEM-AH without discrim-

inator, demonstrating the performance gain in using adversarial

training. CEM-AH without pre-training does not perform well, and

suffers from convergence issues during adversarial training.

6 CONCLUSION
We present CEM-AH, a CEM guided adversarially-trained hypernet-

work to address the drawback of restrictive policy representation

leading to sub-optimal policies while using a multivariate Gaussian

CEM. Experiments demonstrate that CEM-AH not only inherits the

fast convergence and stable training properties of CEM, but also

outperforms CEM in learning a richer policy distribution by using

a hypernetwork. CEM-AH outperforms other CEM-based RL meth-

ods Qt-Opt, Qt-Opt+DDPG and is less sensitive to hyper-parameters

when compared to REINFORCE, DDPG and DQN. Future research

could explore how CEM-AH can accommodate larger network sizes

using methods to re-initialize the guiding CEM policy with a dif-

ferent parameterization technique and transfer weights between

hypernetwork-generated policy and the guiding CEM. The gener-

alizability of CEM-AH and its ensemble inference method can be

explored by applying it to other transfer learning tasks.
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