<u>COMP219:</u> <u>Artificial Intelligence</u>

Lecture 23: Classical Planning

Overview

• Last time

- Resolution in first-order logic; relating Prolog, FO logic and resolution
- Today
 - Overview of classical planning
 - Representing planning problems
 - Planning Domain Definition Language (PDDL)
 - State space linear planning
- Learning outcomes covered today:

Identify or describe approaches used to solve planning problems in AI and apply these to simple examples

What is planning?

- "Devising a plan of action to achieve one's goals"
 Planning = How do I get from here to there?
- Planning systems are problem-solving algorithms that operate on explicit propositional or relational representations of states and actions
- Planning problem: find a plan that is guaranteed (from any of the initial states) to generate a sequence of actions that leads to one of the goal states
- Planning problems often have large state spaces

Automated Planning

- We will look at two popular and effective current approaches to automated classical planning:
 - Forward state-space search with heuristics
 - Translating to a Boolean satisfiability problem
- There are also other approaches
 - e.g. planning graphs: data structures to give better heuristic estimates than other methods, and also used to search for a solution over the space formed by the planning graph

Representing Planning Problems

- Recall search based problem-solving agents
 - Find sequences of actions that result in a goal state
 BUT deal with *atomic* states so need good domainspecific heuristics to perform well
- Planning represented by factored representation
 - Represent a state by a collection of variables
- Planning Domain Definition Language (PDDL)
 - Allows expression of all actions with one schema
 - Inspired by earlier STRIPS planning language

PDDL - Representing States (I)

- A state is represented by a conjunction of fluents
- These are ground, functionless atoms
 - Example: At (Truck1, Manchester) Λ At (Truck2, Warrington)
- Closed world assumption (no facts = false)
- Unique names assumption (Truck1 distinct from Truck2)

Defining a Search Problem

- Define a search problem through:
 - 1. Initial state
 - 2. Actions available in a state
 - 3. Result of action
 - 4. Goal test

PDDL - Representing States (II)

- Not allowed:

 At(x,y) non-ground (i.e. variables alone)
 Poor negation
 At(Father(Fred), Liverpool) uses function
- A state is treated as either
 - *conjunction* of fluents, manipulated by logical inference
 - set of fluents, manipulated with set operations

- Actions described by a set of action schemas that implicitly define Actions(s) and Result(s,a) functions
- Classical planning: most actions leave most states unchanged
 - Relates to the Frame Problem: issue of what changes and what stays the same as a result of actions
- PDDL specifies the result of an action in terms of what changes – don't need to mention everything that stays the same

Action Schema (I)

- Represents a set of ground actions
- Contains action name, list of variables used, precondition and effect
- Example: action schema for flying a plane from one location to another

Action(Fly(p,from,to),

PRECOND: At(p,from) ∧ Plane(p) ∧
 Airport(from) ∧ Airport(to)
EFFECT: ¬At(p,from) ∧ At(p,to))

Action Schema (II)

- Free to choose whatever values we want to instantiate variables
- Precondition and effect of an action are each conjunctions of literals (positive or negated atomic sentences)
 - Precondition defines states in which action can be executed
 - Effect defines result of action
- Sometimes we want to *propositionalise* a PDDL problem (replace each action schema with a set of ground actions) and use a propositional solver (e.g. SATPLAN) to find a solution
 - More on this later...

Action Schema (III)

Action a can be executed in state s if s entails the precondition of a
 (a ∈ Actions(s)) ⇔ s ⊨ Precond(a)

where any variables in a are universally quantified

• Example:

∀p,from,to (Fly(p,from,to) ∈ Actions(s)) ⇔
s ⊨ (At(p,from) ∧ Plane(p) ∧ Airport(from)
∧ Airport(to))

• We say that a is applicable in s if the preconditions are satisfied by s

Action Schema (IV)

- Result of executing action a in state s (s')
 Result(s,a)=(s-Del(a)) U Add(a)
- Delete list (Del (a)): fluents that appear as negative literals in action's effect
- Add list (Add (a)): fluents that appear as positive literals in action's effect
- Note that time is implicit: preconditions have time t, effects have t+1

Example: Air Cargo Transport

 $\begin{array}{l} \text{Init}\left(\text{At}\left(C_{1}, SFO\right) \ \ \Lambda \ \ \text{At}\left(C_{2}, JFK\right) \ \ \Lambda \ \ \text{At}\left(P_{1}, SFO\right) \ \ \Lambda \ \ \text{At}\left(P_{2}, JFK\right) \ \ \Lambda \\ \text{Cargo}\left(C_{1}\right) \ \ \Lambda \ \ \text{Cargo}\left(C_{2}\right) \ \ \Lambda \ \ \text{Plane}\left(P_{1}\right) \ \ \Lambda \ \ \text{Plane}\left(P_{2}\right) \ \ \Lambda \\ \text{Airport}\left(JFK\right) \ \ \Lambda \ \ \text{Airport}\left(SFO\right)\right) \\ \text{Goal}\left(\text{At}\left(C_{1}, JFK\right) \ \ \Lambda \ \ \text{At}\left(C_{2}, SFO\right)\right) \end{array}$

Planning Domain

- A set of action schemas defines a planning domain
- A specific problem within a domain is defined by adding initial state and goal
 - Initial state: conjunction of ground atoms
 - Goal: conjunction of literals (positive or negative) that may contain variables
 - e.g. At(p,LPL) A Plane(p)
- Problem solved when we find sequence of actions that end in a state that entails the goal
 - e.g. Plane (Plane₁) A At (Plane₁, LPL) entails the goal At (p, LPL) A Plane (p)

14

Example: Air Cargo Transport

Init (At (C_1 , SFO) \land At (C_2 , JFK) \land At (P_1 , SFO) \land At (P_2 , JFK) \land Cargo (C_1) \land Cargo (C_2) \land Plane (P_1) \land Plane (P_2) \land Airport (JFK) \land Airport (SFO)) Goal (At (C_1 , JFK) \land At (C_2 , SFO)) Action (Load (c, p, a), PRECOND: At (c, a) \land At (p, a) \land Cargo (c) \land Plane (p) \land Airport (a) EFFECT: \neg At (c, a) \land In (c, p))

Example: Air Cargo Transport

Init (At (C₁,SFO) \land At (C₂,JFK) \land At (P₁,SFO) \land At (P₂,JFK) \land Cargo (C₁) \land Cargo (C₂) \land Plane (P₁) \land Plane (P₂) \land Airport (JFK) \land Airport (SFO)) Goal (At (C₁,JFK) \land At (C₂,SFO)) Action (Load (c,p,a), PRECOND: At (c,a) \land At (p,a) \land Cargo (c) \land Plane (p) \land Airport (a) EFFECT: \neg At (c,a) \land In (c,p)) Action (Unload (c,p,a), PRECOND: In (c,p) \land At (p,a) \land Cargo (c) \land Plane (p) \land Airport (a) EFFECT: At (c,a) \land \neg In (c,p))

Example from Chapter 10 of AIAMA

Example: Air Cargo Transport

- Problem defined with 3 actions
- Actions affect 2 predicates
- When a plane flies from one airport to another, all cargo inside goes too
 - in PDDL we have no explicit universal quantifier to say this as part of the $\ensuremath{\,{\tt Fly}}$ action
 - so instead we use the load/unload actions:
 - cargo seizes to be At the old airport when it is loaded
 - and only becomes At the new airport when it is unloaded
- A solution plan:

 $\begin{bmatrix} Load\left(C_1,P_1,SF0\right),Fly\left(P_1,SF0,JFK\right),Unload\left(C_1,P_1,JFK\right),\\ Load\left(C_2,P_2,JFK\right),Fly\left(P_2,JFK,SF0\right),Unload\left(C_2,P_2,SF0\right) \end{bmatrix}.$

Problem – spurious actions like *Fly(P1, JFK, JFK)* have contradictory effects
 Add inequality preconditions Λ (*from ≠ to*)

Example: Air Cargo Transport

Init (At (C_1 , SFO) \land At (C_2 , JFK) \land At (P_1 , SFO) \land At (P_2 , JFK) \land Cargo (C_1) \wedge Cargo (C_2) \wedge Plane (P_1) \wedge Plane (P_2) \wedge Airport (JFK) ∧ Airport (SFO)) Goal (At (C_1 , JFK) Λ At (C_2 , SFO)) Action(Load(c,p,a), PRECOND: $At(c,a) \wedge At(p,a) \wedge Cargo(c) \wedge Plane(p) \wedge$ Airport(a) EFFECT: $\neg At(c,a) \land In(c,p)$) Action (Unload (c,p,a), PRECOND: $In(c,p) \land At(p,a) \land Cargo(c) \land Plane(p) \land$ Airport(a) EFFECT: $At(c,a) \land \neg In(c,p)$) Action (Fly (p, from, to), PRECOND: At(p,from) A Plane(p) A Airport(from) A Airport(to) EFFECT: $\neg At(p, from) \land At(p, to))$

Example from Chapter 10 of AIAMA

17

Planning as State-Space Search

- Forward (progression) state-space search
 - Prone to exploring irrelevant actions
 - Uninformed forward-search in large state spaces is too inefficient to be practical
 - Need heuristics to make forward search feasible

Example: Air Cargo Problem

- Consider this air cargo problem:
 - 10 airports: each has 5 planes and 20 pieces of cargo
 - Goal: Move all cargo at airport A to airport B
 - Simple solution: Load 20 cargo onto plane₁ at airport A, fly to airport B, unload cargo
 - Average branching factor is huge:
 - Each of 50 planes can fly to 9 airports
 - 200 cargo can be unloaded/loaded onto any plane at its airport
 - In any state min. 450 actions, max. 10,450 actions
 - If we take average 2000 possible actions per state, search graph up to obvious solution has 2000⁴¹ nodes

Backward (Regression) Relevant-States Search (I)

- Start at the goal, apply actions backwards until reach initial state
- Only consider actions that are relevant to the goal (or current state), i.e.
 - Action must contribute to the goal
 - Must not have any effect which negates an element of the goal
- Consider a set of relevant states at each step, not just a single state (*cf.* belief state search)

21

Backward (Regression) Relevant-States Search (II)

- We must know how to regress from a state description to a predecessor state
 - PDDL description makes it easy to regress actions:
 - Effects added by action need not have been true before
 - Preconditions must have been true before
 - Do not consider Del (a) as we don't know whether or not fluents were true before
- Need to deal with partially uninstantiated actions and states, not just ground ones
- Backward search keeps branching factor lower than forward search BUT using state sets means it's harder to define good heuristics – so most current systems favour forward search

Exercise

- Consider the following air cargo problem
- Goal: deliver a specific piece of cargo to SFO At (C₂, SFO)
- Which action does this suggest that will lead to this goal?

Exercise

- Consider the following air cargo problem
- Goal: deliver a specific piece of cargo to SFO At (C2, SFO)
- Suggests the action

Action (Unload (C_2 , p', SFO), PRECOND: $In(C_2$, p') \land At(p', SFO) \land Cargo(C_2) \land Plane(p') \land Airport(SFO) EFFECT: At(C_2 , SFO) $\land \neg$ In(C_2 , p')) unloading from an unspecified plane p' at SFO

• What is the regressed state description?

Heuristics for Planning

- As planning uses factored representation of states (rather than atomic states), it is possible to define good domain-independent heuristics
- An admissible heuristic (i.e. does not overestimate distance to goal) can be derived by defining a *relaxed problem* that is easier to solve
 - Can then make use of A^* search to find optimal solutions
- The exact cost of a solution to this easier problem becomes a heuristic for the original problem
- Examples of heuristics: ignore preconditions, state abstraction, problem decomposition...

Exercise

- Goal: At (C₂, SFO)
 Action (Unload (C₂, p', SFO), PRECOND: In (C₂, p') ∧ At (p', SFO) ∧ Cargo (C₂) ∧ Plane (p') ∧
 Airport (SFO)
 EFFECT: At (C₂, SFO) ∧ ¬ In (C₂, p'))
- Regressed state description is
 g' = In(C₂, p') ^ At(p', SFO) ^ Cargo(C₂)
 ^ Plane(p') ^ Airport(SFO)

26

Planning as Boolean Satisfiability

- Reduces planning problem to classical propositional SAT problem
- SAT problem: is this propositional formula satisfiable? (- is there an assignment that makes it true?)
- Making plans by logical inference
- To use SATPlan, PDDL planning problem description needs first to be translated to propositional logic

SATPlan

- SATPLAN is the question of whether there exists any plan that solves a given planning problem
 - SATPLAN is about satisficing (want any solution, not necessarily the cheapest or the shortest)
- *Bounded* SATPLAN is the question of whether there exists a plan of length *k* or less
 - Bounded SATPLAN can be used to ask for the optimal solution
- If in the PDDL language we do not allow functional symbols, both problems are decidable

SATPlan Algorithm

- 1. Construct a propositional sentence that includes
 - (a) description of the initial state
 - (b) description of the planning domain (precondition axioms, successor state axioms, mutual exclusion of actions) up to some maximum time t_n

(c) the assertion that the goal is achieved at time t_n

- 2. Call SAT solver to return a model for the sentence from 1.
- If a model exists, extract the variables that represent actions at each time from t_o to t_n and are assigned true, and present them in order of times as a plan

29

Summary

- Planning systems are problem-solving algorithms that operate on explicit propositional or relational representations of states and actions
 - PDDL describes
 - initial and goal states as conjunctions of literals
 - actions in terms of preconditions and effects
- State-space search in forward or backward direction
- Can get effective heuristics by relaxing the planning problem
- Can make plans by logical inference
 - Boolean satisfiability and SATPLAN
- Next time
 - Planning in complex environments