
1

COMP219:
Artificial Intelligence

Lecture 23: Classical Planning

Overview

• Last time
– Resolution in first-order logic; relating Prolog, FO logic and resolution

• Today
– Overview of classical planning

– Representing planning problems
• Planning Domain Definition Language (PDDL)

– State space linear planning

• Learning outcomes covered today:

Identify or describe approaches used to solve planning problems in AI and apply
these to simple examples

2

What is planning?

• “Devising a plan of action to achieve one’s goals”

Planning = How do I get from here to there?

• Planning systems are problem-solving algorithms that
operate on explicit propositional or relational
representations of states and actions

• Planning problem: find a plan that is guaranteed (from
any of the initial states) to generate a sequence of
actions that leads to one of the goal states

• Planning problems often have large state spaces

3

Automated Planning

• We will look at two popular and effective current
approaches to automated classical planning:
– Forward state-space search with heuristics

– Translating to a Boolean satisfiability problem

• There are also other approaches
– e.g. planning graphs: data structures to give better

heuristic estimates than other methods, and also used
to search for a solution over the space formed by the
planning graph

4

Representing Planning Problems

• Recall search based problem-solving agents
– Find sequences of actions that result in a goal state

BUT deal with atomic states so need good domain-
specific heuristics to perform well

• Planning represented by factored representation
– Represent a state by a collection of variables

• Planning Domain Definition Language (PDDL)
– Allows expression of all actions with one schema

– Inspired by earlier STRIPS planning language

5

Defining a Search Problem

• Define a search problem through:

1. Initial state

2. Actions available in a state

3. Result of action

4. Goal test

6

PDDL – Representing States (I)

• A state is represented by a conjunction of
fluents

• These are ground, functionless atoms
– Example: At(Truck1,Manchester) ∧
At(Truck2,Warrington)

• Closed world assumption (no facts = false)

• Unique names assumption (Truck1 distinct
from Truck2)

7

PDDL – Representing States (II)

• Not allowed:
At(x,y) non-ground (i.e. variables alone)

¬ Poor negation

At(Father(Fred),Liverpool) uses function

• A state is treated as either
– conjunction of fluents, manipulated by logical

inference

– set of fluents, manipulated with set operations

8

PDDL – Representing Actions

• Actions described by a set of action schemas
that implicitly define Actions(s) and
Result(s,a) functions

• Classical planning: most actions leave most
states unchanged
– Relates to the Frame Problem: issue of what

changes and what stays the same as a result of
actions

• PDDL specifies the result of an action in terms
of what changes – don’t need to mention
everything that stays the same

9

Action Schema (I)

• Represents a set of ground actions

• Contains action name, list of variables used,
precondition and effect

• Example: action schema for flying a plane
from one location to another

Action(Fly(p,from,to),
PRECOND: At(p,from) Plane(p) ∧ ∧

 Airport(from) Airport(to)∧
EFFECT: ¬ At(p,from)∧ At(p,to))

10

Action Schema (II)

• Free to choose whatever values we want to instantiate

variables

• Precondition and effect of an action are each conjunctions of

literals (positive or negated atomic sentences)

– Precondition defines states in which action can be executed

– Effect defines result of action

• Sometimes we want to propositionalise a PDDL problem

(replace each action schema with a set of ground actions) and

use a propositional solver (e.g. SATPLAN) to find a solution

– More on this later…

11

Action Schema (III)

• Action a can be executed in state s if s entails the precondition of a

(a ∈ Actions(s)) ⇔ s ╞ Precond(a)

 where any variables in a are universally quantified

• Example:

∀p,from,to (Fly(p,from,to) ∈ Actions(s)) ⇔

 s ╞ (At(p,from) ∧ Plane(p) Airport(from)∧

 ∧ Airport(to))

• We say that a is applicable in s if the preconditions are satisfied by s

12

Action Schema (IV)

• Result of executing action a in state s (s′)

Result(s,a)=(s-Del(a)) Add(a)⋃

• Delete list (Del(a)): fluents that appear as negative
literals in action’s effect

• Add list (Add(a)): fluents that appear as positive literals
in action’s effect

• Note that time is implicit: preconditions have time t,
effects have t+1

13

Planning Domain

• A set of action schemas defines a planning domain

• A specific problem within a domain is defined by adding
initial state and goal
– Initial state: conjunction of ground atoms

– Goal: conjunction of literals (positive or negative) that may
contain variables
• e.g. At(p,LPL) Plane(p)∧

• Problem solved when we find sequence of actions that
end in a state that entails the goal
– e.g. Plane(Plane1) ∧ At(Plane1,LPL) entails the

goal At(p,LPL) Plane(p)∧

14

Example: Air Cargo Transport
Init(At(C1,SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧

Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a),
PRECOND: At(c,a) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: ¬At(c,a) ∧ In(c,p))

Action(Unload(c,p,a),
PRECOND: In(c,p) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: At(c,a) ¬∧ In(c,p))

Action(Fly(p,from,to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)
EFFECT: ¬At(p,from) ∧ At(p,to))

15Example from Chapter 10 of AIAMA

Example: Air Cargo Transport
Init(At(C1,SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧

Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a),
PRECOND: At(c,a) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: ¬At(c,a) ∧ In(c,p))

Action(Unload(c,p,a),
PRECOND: In(c,p) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: At(c,a) ¬∧ In(c,p))

Action(Fly(p,from,to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)
EFFECT: ¬At(p,from) ∧ At(p,to))

16Example from Chapter 10 of AIAMA

Example: Air Cargo Transport
Init(At(C1,SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧

Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a),
PRECOND: At(c,a) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: ¬At(c,a) ∧ In(c,p))

Action(Unload(c,p,a),
PRECOND: In(c,p) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: At(c,a) ¬∧ In(c,p))

Action(Fly(p,from,to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)
EFFECT: ¬At(p,from) ∧ At(p,to))

17Example from Chapter 10 of AIAMA

Example: Air Cargo Transport
Init(At(C1,SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧

Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a),
PRECOND: At(c,a) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: ¬At(c,a) ∧ In(c,p))

Action(Unload(c,p,a),
PRECOND: In(c,p) ∧ At(p,a) ∧ Cargo(c) ∧ Plane(p) ∧
Airport(a)
EFFECT: At(c,a) ¬∧ In(c,p))

Action(Fly(p,from,to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)
EFFECT: ¬At(p,from) ∧ At(p,to))

18Example from Chapter 10 of AIAMA

Example: Air Cargo Transport

• Problem defined with 3 actions

• Actions affect 2 predicates

• When a plane flies from one airport to another, all cargo inside goes too

– in PDDL we have no explicit universal quantifier to say this as part of the Fly
action

– so instead we use the load/unload actions:

● cargo seizes to be At the old airport when it is loaded

● and only becomes At the new airport when it is unloaded

• A solution plan:
[Load(C1,P1,SFO),Fly(P1,SFO,JFK),Unload(C1,P1,JFK),
Load(C2.P2.JFK),Fly(P2,JFK,SFO),Unload(C2,P2,SFO)].

• Problem – spurious actions like Fly(P1,JFK,JFK) have contradictory effects
– Add inequality preconditions ∧ (from ≠ to)

19

Planning as State-Space Search

• Forward (progression) state-space search
– Prone to exploring irrelevant actions

– Uninformed forward-search in large state spaces is
too inefficient to be practical

– Need heuristics to make forward search feasible

20

Example: Air Cargo Problem

• Consider this air cargo problem:
– 10 airports: each has 5 planes and 20 pieces of cargo

– Goal: Move all cargo at airport A to airport B

– Simple solution: Load 20 cargo onto plane1 at airport A, fly to

airport B, unload cargo

– Average branching factor is huge:
• Each of 50 planes can fly to 9 airports

• 200 cargo can be unloaded/loaded onto any plane at its airport

• In any state min. 450 actions, max. 10,450 actions

– If we take average 2000 possible actions per state, search graph
up to obvious solution has 200041 nodes

21

Backward (Regression) Relevant-States
Search (I)

• Start at the goal, apply actions backwards until reach

initial state

• Only consider actions that are relevant to the goal (or

current state), i.e.

– Action must contribute to the goal

– Must not have any effect which negates an element of the

goal

• Consider a set of relevant states at each step, not just a

single state (cf. belief state search)

22

Backward (Regression) Relevant-States
Search (II)

• We must know how to regress from a state description to a
predecessor state
– PDDL description makes it easy to regress actions:
• Effects added by action need not have been true before

• Preconditions must have been true before

• Do not consider Del(a)as we don’t know whether or not fluents were true
before

• Need to deal with partially uninstantiated actions and states,
not just ground ones

• Backward search keeps branching factor lower than forward
search BUT using state sets means it’s harder to define good
heuristics – so most current systems favour forward search

23

Exercise

24

• Consider the following air cargo problem

• Goal: deliver a specific piece of cargo to SFO
At(C2,SFO)

• Which action does this suggest that will lead to this
goal?

Exercise

25

• Consider the following air cargo problem

• Goal: deliver a specific piece of cargo to SFO At(C2,SFO)

• Suggests the action

 Action(Unload(C2, p′, SFO),
 PRECOND: In(C2, p′) ∧ At(p′, SFO) ∧
Cargo(C2) ∧ Plane(p′) ∧ Airport(SFO)
 EFFECT: At(C2, SFO) ¬ ∧ In(C2, p′))

 unloading from an unspecified plane p′ at SFO

• What is the regressed state description?

Exercise

26

• Goal: At(C2,SFO)

Action(Unload(C2, p′, SFO),
PRECOND: In(C2, p′) ∧ At(p′, SFO) ∧
 Cargo(C2) ∧ Plane(p′) ∧
Airport(SFO)
EFFECT: At(C2, SFO) ¬ ∧ In(C2, p′))

• Regressed state description is
g′ = In(C2, p′) ∧ At(p′, SFO) ∧ Cargo(C2)

 ∧ Plane(p′) ∧ Airport(SFO)

Heuristics for Planning

• As planning uses factored representation of states (rather
than atomic states), it is possible to define good domain-
independent heuristics

• An admissible heuristic (i.e. does not overestimate distance
to goal) can be derived by defining a relaxed problem that
is easier to solve
– Can then make use of A* search to find optimal solutions

• The exact cost of a solution to this easier problem becomes
a heuristic for the original problem

• Examples of heuristics: ignore preconditions, state
abstraction, problem decomposition…

27

Planning as Boolean Satisfiability

• Reduces planning problem to classical
propositional SAT problem

• SAT problem: is this propositional formula
satisfiable? (- is there an assignment that makes
it true?)

• Making plans by logical inference

• To use SATPlan, PDDL planning problem
description needs first to be translated to
propositional logic

28

SATPlan

• SATPLAN is the question of whether there exists any

plan that solves a given planning problem

– SATPLAN is about satisficing (want any solution, not

necessarily the cheapest or the shortest)

• Bounded SATPLAN is the question of whether there

exists a plan of length k or less

– Bounded SATPLAN can be used to ask for the optimal solution

• If in the PDDL language we do not allow functional

symbols, both problems are decidable

29

SATPlan Algorithm

1. Construct a propositional sentence that includes
(a) description of the initial state

(b) description of the planning domain (precondition axioms,
successor state axioms, mutual exclusion of actions) up to some
maximum time tn

(c) the assertion that the goal is achieved at time tn

2. Call SAT solver to return a model for the sentence from 1.

3. If a model exists, extract the variables that represent
actions at each time from t0 to tn and are assigned

true, and present them in order of times as a plan

30

Summary

• Planning systems are problem-solving algorithms that operate on
explicit propositional or relational representations of states and actions
– PDDL describes

• initial and goal states as conjunctions of literals

• actions in terms of preconditions and effects

• State-space search in forward or backward direction

• Can get effective heuristics by relaxing the planning problem

• Can make plans by logical inference
– Boolean satisfiability and SATPLAN

• Next time
– Planning in complex environments

31

