
COMP219:
Artificial Intelligence

Lecture 6: Recursion in Prolog

1

Overview

• Last time
– Introduction to Prolog: facts, rules, queries; family tree program

• Today:
– Recursive rules in Prolog; writing and evaluating them
– Structures in Prolog
– Declarative and procedural meanings for Prolog programs

• Learning outcome covered today:
Understand and write Prolog code to solve simple knowledge-
based problems.

2

Recap - Last Week

• Prolog programs comprised of facts and rules

• Facts describe things that are true without conditions, like
data in a database

• Rules describe things that hold depending on certain
conditions

• Prolog programs can be queried using questions

• Prolog clauses are facts, rules and questions

• Queries are answered by instantiating variables, creating new
sub-goals from rules, and matching with facts

3

The Ancestor Relation

• Consider the family tree from the previous Prolog lecture.
We’d like to be able to define ancestor:
– a parent, or
– a parent of a parent, or
– a parent of a parent of a parent, or
– . . .

4

First Attempt
ancestor(X,Z):-

parent(X,Z).
ancestor(X,Z):-

parent(X,Y),
parent(Y,Z).

ancestor(X,Z):-
parent(X,Y1),
parent(Y1,Y2),
parent(Y2,Z).

• Problems
– Lengthy (not so important)
– Using only the first two rules (or more) we get a finite

depth on our search for ancestors
5

Recursion

ancestor(X,Z):-
 parent(X,Z).
ancestor(X,Z):-

parent(X,Y),
ancestor(Y,Z).

• This type of definition is called a recursive definition.
• Recursion is very important in Prolog. A set of clauses

referring to the same relation is known as a procedure. This is
a recursive procedure.

Base case

Recursive Call

Predicate in head and body

6

Example: A Family Tree

7

Questioning Recursive Definitions

• The question Who are the ancestors of Lucy? is posed as
follows

?- ancestor(X,lucy).
X=ian ;
X=pete ;
X=lou ;
X=cathy ;
false.

Semi-colon for
‘next answer’,
full stop for ‘enough’.

8

How this Works (I)
ancestor(X,Z):-
 parent(X,Z).
ancestor(X,Z):-

parent(X,Y),
 ancestor(Y,Z).

– parent(pete,ian).
– parent(ian,pete).
– parent(ian,lucy).
– parent(cathy,ian).
– parent(lou,peter)
– parent(lou,pauline)

• ancestor(X,lucy)?
• {try first clause}
• parent(X, lucy)?
• match: X=ian
• success
X=ian
;
• {no other matches for

parent(X, lucy)
→ try second clause}

• parent(X,Y)?
• match: X=pete, Y=ian
• ancestor(ian,lucy)?
• {yes, via first clause!} succes
X=pete
;
• {retry second clause} 9

How this Works (II)
ancestor(pete,lucy)

parent(pete,lucy)

No fact

r1

parent(pete,Y),
ancestor(Y,lucy).

r2

What if Y=ian?
parent(pete,ian),
ancestor(ian,lucy)

r1

parent(ian,lucy)

Yes fact 10

Recursion and Search

• Recursion is a powerful construct essential to Prolog
• Prolog searches for an answer through several possibilities

using depth first search
• This search method can be applied to search problems
• The lexical scope of a variable is the clause; the ‘same’

variable in different clauses is different (Bratko book section
2.1.2)

• But first we have to learn about structures

11

Structures

• Structures are Prolog's way to represent structured data
• They are objects that have several components and a name

(functor) that associates them together
– date(5, february, 2002).
– location(depot1, manchester).
– id_no(rajeev, gore, 02571).
– state(onTable,onBlock).

12

Example: Monkey and Banana

• “A monkey is at the door into a room. In the middle of the
room, a banana is hanging from the ceiling. The monkey is
hungry and wants the banana, but cannot stretch high enough
from the floor. At the window there is a box the monkey can
climb on to get the banana.”

• The monkey can: walk, climb, push the box (if at box), grasp
the banana (if standing on box under banana)

• Can the monkey get the banana?

Example from section 2.5 of Bratko book.

13

States

• States are represented by the structure state(X,Y,Z,U)
– X: Horizontal position of monkey

• door, middle, window
– Y: Vertical position of monkey

• onFloor, onBox
– Z: Horizontal position of box

• door, middle, window
– U: Monkey has banana or doesn’t have banana

• banana, noBanana

14

States

• Goal state: state(_,_,_,banana)
• The underscore _ stands for an anonymous variable – could

be any value, we do not care what it is

• The program has to search the state space for a solution given
the available moves

15

Moves
• Monkey can: grasp, climb, push, walk

• Moves change states, for example:

move(
 state(middle, onBox, middle, noBanana),
 grasp,
 state(middle, onBox, middle, banana)).

• Where the state is that monkey is in the middle, on the
box, the box is in the middle, and the monkey doesn’t have
the banana, the monkey grasps, then the state is that the
monkey is in the middle, on the box, the box is in the
middle, and the monkey has the banana – Joy!

16

Problem Analysed with Recursive Rules

• Write rules to move the monkey and box around, have the
monkey doing actions, till the monkey and box are in position,
and the right action is executed. No strategy (except), just
search

• Base case: monkey has the banana
canGet(state(_,_,_,banana)).

 - Recursive rule: move until monkey gets the banana
canGet(State1):-

move(State1, Move, State2),
canGet(State2).

17

The Program

18

Tries moves in order:
grasp, climb, push, walk

Note variables
and predicates

Trace

19

?- trace, canGet(state(door,onFloor,window,noBanana)).
 Call: (9) canGet(state(door, onFloor, window, noBanana)) ? creep
 Call: (10) move(state(door, onFloor, window, noBanana), _L247, _L230) ? creep
 Exit: (10) move(state(door, onFloor, window, noBanana), walk(door, _G493), state(_G493,
onFloor, window, noBanana)) ? creep
 Call: (10) canGet(state(_G493, onFloor, window, noBanana)) ? creep
 Call: (11) move(state(_G493, onFloor, window, noBanana), _L264, _L247) ? creep
 Exit: (11) move(state(window, onFloor, window, noBanana), climb, state(window, onBox,
window, noBanana)) ? creep
 Call: (11) canGet(state(window, onBox, window, noBanana)) ? creep
 Call: (12) move(state(window, onBox, window, noBanana), _L301, _L284) ? creep
 Fail: (12) move(state(window, onBox, window, noBanana), _L301, _L284) ? creep
 Fail: (11) canGet(state(window, onBox, window, noBanana)) ? creep
 Redo: (11) move(state(_G493, onFloor, window, noBanana), _L264, _L247) ? creep
 Exit: (11) move(state(window, onFloor, window, noBanana), push(window, _G501),
state(_G501, onFloor, _G501, noBanana)) ? creep
 Call: (11) canGet(state(_G501, onFloor, _G501, noBanana)) ? creep
 Call: (12) move(state(_G501, onFloor, _G501, noBanana), _L302, _L285) ? creep
 Exit: (12) move(state(_G501, onFloor, _G501, noBanana), climb, state(_G501, onBox,
_G501, noBanana)) ? creep
 Call: (12) canGet(state(_G501, onBox, _G501, noBanana)) ? creep
 Call: (13) move(state(_G501, onBox, _G501, noBanana), _L339, _L322) ? creep
 Exit: (13) move(state(middle, onBox, middle, noBanana), grasp, state(middle, onBox,
middle, banana)) ? creep
 Call: (13) canGet(state(middle, onBox, middle, banana)) ? creep
 Exit: (13) canGet(state(middle, onBox, middle, banana)) ? creep
 Exit: (12) canGet(state(middle, onBox, middle, noBanana)) ? creep
 Exit: (11) canGet(state(middle, onFloor, middle, noBanana)) ? creep
 Exit: (10) canGet(state(window, onFloor, window, noBanana)) ? creep
 Exit: (9) canGet(state(door, onFloor, window, noBanana)) ? creep
true

20

?- trace, canGet(state(door,onFloor,window,noBanana)).
 Call: (9) canGet(state(door, onFloor, window, noBanana)) ? creep
 Call: (10) move(state(door, onFloor, window, noBanana), _L247, _L230) ? creep
 Exit: (10) move(state(door, onFloor, window, noBanana), walk(door, _G493), state(_G493,
onFloor, window, noBanana)) ? creep
 Call: (10) canGet(state(_G493, onFloor, window, noBanana)) ? creep
 Call: (11) move(state(_G493, onFloor, window, noBanana), _L264, _L247) ? creep
 Exit: (11) move(state(window, onFloor, window, noBanana), climb, state(window, onBox,
window, noBanana)) ? creep
 Call: (11) canGet(state(window, onBox, window, noBanana)) ? creep
 Call: (12) move(state(window, onBox, window, noBanana), _L301, _L284) ? creep
 Fail: (12) move(state(window, onBox, window, noBanana), _L301, _L284) ? creep
 Fail: (11) canGet(state(window, onBox, window, noBanana)) ? creep
 Redo: (11) move(state(_G493, onFloor, window, noBanana), _L264, _L247) ? creep
 Exit: (11) move(state(window, onFloor, window, noBanana), push(window, _G501),
state(_G501, onFloor, _G501, noBanana)) ? creep
 Call: (11) canGet(state(_G501, onFloor, _G501, noBanana)) ? creep
 Call: (12) move(state(_G501, onFloor, _G501, noBanana), _L302, _L285) ? creep
 Exit: (12) move(state(_G501, onFloor, _G501, noBanana), climb, state(_G501, onBox,
_G501, noBanana)) ? creep
 Call: (12) canGet(state(_G501, onBox, _G501, noBanana)) ? creep
 Call: (13) move(state(_G501, onBox, _G501, noBanana), _L339, _L322) ? creep
 Exit: (13) move(state(middle, onBox, middle, noBanana), grasp, state(middle, onBox,
middle, banana)) ? creep
 Call: (13) canGet(state(middle, onBox, middle, banana)) ? creep
 Exit: (13) canGet(state(middle, onBox, middle, banana)) ? creep
 Exit: (12) canGet(state(middle, onBox, middle, noBanana)) ? creep
 Exit: (11) canGet(state(middle, onFloor, middle, noBanana)) ? creep
 Exit: (10) canGet(state(window, onFloor, window, noBanana)) ? creep
 Exit: (9) canGet(state(door, onFloor, window, noBanana)) ? creep
true

Can’t grasp, climb
or push, so walks

Tries climbing

Not under banana

Pushes instead

Can’t grasp so
climbs

Can grasp now

Unwind the
recursion

Comments

• Prolog backtracked only once

• Good ordering of clauses in the move procedure

• With a different order may never terminate!

– Example: if push is the first line in the move procedure, the
monkey will go to the box, and then push it around
aimlessly

– The monkey always needs to try to grasp (first action in
order), and see whether climbing helps (second action in
order)

– There is some strategy built into the rule order

21

Infinite Loops

• Avoid infinite recursive loops!
• Suppose a rule which means that people are silly if they are

silly:
 silly(X):- silly(X)
• Querying this program

?- silly(katie).
matched the head of the above rule, X is instantiated by katie,
and the new sub-goal is silly(katie). This is matched a second
time to the head of the above clause, and a new sub-goal is
generated, and so on. But we never get an answer because
there are no base facts.

22

Infinite Loops with predecessor

• If we change the definition of ‘ancestor’ to ‘predecessor’ and
put the clauses in the following order, we have problems

We never hit the base case!
We call predecessor(_,_) forever

predecessor(X,Z):-
 predecessor(Y,Z),
 parent(X,Y).

predecessor(X,Z):-
 parent(X,Z).

23

Avoiding Infinite Looping

• A general rule to avoid such problems is to ensure that the
base case is the first clause - try the simplest idea first

• Must hit a fact to terminate. Look at our nice ancestor
example…

24

Nice Order

ancestor(X,Z):-
 parent(X,Z).
ancestor(X,Z):-

parent(X,Y),
ancestor(Y,Z).

?- trace, ancestor(pete,lucy).
Call: (9) ancestor(pete, lucy) ? creep
Call: (10) parent(pete, lucy) ? creep
Fail: (10) parent(pete, lucy) ? creep
Redo: (9) ancestor(pete, lucy) ? creep
Call: (10) parent(pete, _L233) ? creep
Exit: (10) parent(pete, ian) ? creep
Call: (10) ancestor(ian, lucy) ? creep
Call: (11) parent(ian, lucy) ? creep
Hits base case first
Exit: (11) parent(ian, lucy) ? creep
Exit: (10) ancestor(ian, lucy) ? creep
Exit: (9) ancestor(pete, lucy) ? creep
true .

25

Avoiding Infinite Looping

• Must hit a fact to terminate
predecessor2(X,Z):-

parent(X,Y),
predecessor2(Y,Z).

predecessor2(X,Z):-
parent(X,Z).

• Does this cause infinite looping or other badness?

26

?- predecessor2(pete,lucy).
 Call: (9) predecessor2(pete, lucy) ? creep
 Call: (10) parent(pete, _L196) ? creep
 Exit: (10) parent(pete, ian) ? creep
 Call: (10) predecessor2(ian, lucy) ? creep
 Call: (11) parent(ian, _L214) ? creep
 Exit: (11) parent(ian, peter) ? creep
 Call: (11) predecessor2(peter, lucy) ? creep
 Call: (12) parent(peter, _L249) ? creep
 Fail: (12) parent(peter, _L249) ? creep
 Redo: (11) predecessor2(peter, lucy) ? creep
 Call: (12) parent(peter, lucy) ? creep
 Fail: (12) parent(peter, lucy) ? creep
 Fail: (11) predecessor2(peter, lucy) ? creep
 Redo: (11) parent(ian, _L214) ? creep
 Exit: (11) parent(ian, lucy) ? creep
 Call: (11) predecessor2(lucy, lucy) ? creep
 Call: (12) parent(lucy, _L232) ? creep
 Fail: (12) parent(lucy, _L232) ? creep
 Redo: (11) predecessor2(lucy, lucy) ? creep
 Call: (12) parent(lucy, lucy) ? creep
 Fail: (12) parent(lucy, lucy) ? creep
 Fail: (11) predecessor2(lucy, lucy) ? creep
 Redo: (10) predecessor2(ian, lucy) ? creep
 Call: (11) parent(ian, lucy) ? creep
 Exit: (11) parent(ian, lucy) ? creep
 Exit: (10) predecessor2(ian, lucy) ? creep
 Exit: (9) predecessor2(pete, lucy) ? creep
true .

Works, but very inefficient.
Explores whether Peter is Lucy’s predecessor

Would be worse if Peter had children

And whether Lucy is her own predecessor

Would be worse if Lucy had children

Before it reaches the base case.

27

Declarative and Procedural Meaning

• Two interpretations of the meaning of Prolog programs
– declarative (logical)
– procedural

• The declarative meaning determines what will count as an
answer. It is concerned only with the relations that have been
defined in the program.

• The procedural meaning also involves how this output is
obtained. This means that the order of clauses is significant.

28

Declarative and Procedural Meaning

• Consider the query parent(X,ian).

• The declarative meaning tells us that both cathy and pete can
be successfully instantiated as X.

• Declaratively, (cathy,ian) and (pete,ian) are the same

• The procedural meaning tells us that if the fact
parent(pete,ian) occurs in the program before
parent(cathy,ian), then the first answer returned is based on
parent(pete,ian).

• Answer will be X=pete (but we can also obtain the second
answer, X=cathy, by typing a semi-colon)

29

Declarative and Procedural Meaning

• Remember Prolog uses depth first search to order its goals

• If the wrong node is chosen, the path may be infinite (so the
program does not terminate)

• Or the path may be very long and ultimately (perhaps)
unsuccessful

• So it is important that we order the clauses so the best path
will be tried first. This is a matter of good programming style.

30

Declarative and Procedural Meaning

• The ancestor and predecessor2 programs are declaratively the
same – they return the same answers. But, predecessor2 is
procedurally inefficient

• We have shown that predecessor does not return an answer,
i.e. it is not procedurally correct

31

Summary

• Recursion is a powerful construct essential to Prolog

• Take care with recursive rules to avoid an infinite sequence of
recursive calls

• The order of clauses and goals does matter

• Programs that are declaratively correct may not be
procedurally correct (and so will not work in practice)

• Next time
– Improving on blind search

32

Reminder

• No Lecture on Monday!

• There will be no lectures on:
– 16-10-2017
– 27-10-2017
– 30-10-2017

33

	COMP219: Artificial Intelligence
	Overview
	Recap - Last Week
	The Ancestor Relation
	First Attempt
	Recursion
	Example: A Family Tree
	Questioning Recursive Definitions
	How this Works (I)
	How this Works (II)
	Recursion and Search
	Structures
	Example: Monkey and Banana
	States
	States
	Moves
	Problem Analysed with Recursive Rules
	The Program
	Trace
	Slide 20
	Comments
	Infinite Loops
	Infinite Loops with predecessor
	Avoiding Infinite Looping
	Nice Order
	Avoiding Infinite Looping
	Slide 27
	Declarative and Procedural Meaning
	Declarative and Procedural Meaning
	Declarative and Procedural Meaning
	Declarative and Procedural Meaning
	Summary
	Slide 33

