
COMP219:
Artificial Intelligence

Lecture 13: Game Playing
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Overview

• Last time
– Search with partial/no observations
– Belief states
– Incremental belief state search
– Determinism vs non-determinism

• Today
– We will look at how search can be applied to playing games

• Types of games
• Perfect play

– minimax decisions
– alpha–beta pruning

• Playing with limited recourses
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Games and Search

• In search we make all the moves. In games we play 
against an “unpredictable” opponent
– Solution is a strategy specifying a move for every possible 

opponent reply
• Assume that the opponent is intelligent: always makes 

the best move
• Some method is needed for selecting good moves that 

stand a good chance of achieving a winning position, 
whatever the opponent does!

• There are time limits, so we are unlikely to find goal, 
and must approximate using heuristics
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Types of Game

• In some games we have perfect information – 
the position is known completely

• In others we have imperfect information: e.g. 
we cannot see the opponent’s cards

• Some games are deterministic – no random 
element

• Others have elements of chance (dice, cards)
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Types of Games
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We will consider:

• Games that are:
– Deterministic
– Two-player
– Zero-sum

• the utility values at the end are equal and opposite
• example: one wins (+1) the other loses (−1)

– Perfect information
• E.g. Othello, Blitz Chess
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Problem Formulation

• Initial state
– Initial board position, player to move

• Transition model
– List of (move, state) pairs, one per legal move

• Terminal test
– Determines when the game is over

• Utility function
– Numeric value for terminal states
– e.g. Chess +1, -1, 0
– e.g. Backgammon +192 to -192
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Game Tree

• Each level labelled with player to move
• Each level represents a ply

– Half a turn
• Represents what happens with competing 

agents

15



Introducing MIN and MAX

• MIN and MAX are two players:
– MAX wants to win (maximise utility)
– MIN wants MAX to lose (minimise utility for MAX)
– MIN is the Opponent

• Both players will play to the best of their ability
– MAX wants a strategy for maximising utility assuming 

MIN will do best to minimise MAX’s utility
– Consider minimax value of each node
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Example Game Tree

Minimax value of a node
is the  value of the 
best terminal node, assuming
Best play by opponent
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Minimax Value
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• Utility for MAX of being in that state assuming both 
players play optimally to the end of the game

• Formally:



Minimax Algorithm

• Calculate minimaxValue of each node 
recursively

• Depth-first exploration of tree
• Game tree as minimax tree
• Max Node:

• Min Node
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Minimax Tree
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Minimax Tree
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Minimax Tree
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Max takes the highest 
value from its children 



Exercise
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• Perform the minimax search algorithm on the 
following tree to get the minimax value of the 
root:



Exercise
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Exercise

30

6 4 7 6 8 11 1 2
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Properties of Minimax

• Complete, if tree is finite
• Optimal, against an optimal opponent. Otherwise??

– No. e.g. expected utility against random player
• Time complexity: bm

• Space complexity: bm (depth-first exploration)
– For chess, b ≈ 35, m ≈ 100 for “reasonable” games
– Infeasible – so typically set a limit on look ahead. Can still use 

minimax, but the terminal node is deeper on every move, so 
there can be surprises. No longer optimal

• But do we need to explore every path?
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Pruning

• Basic idea:
If you know half-way through a calculation that it 
will succeed or fail, then there is no point in doing 
the rest of it

• For example, in Java it is clear that when 
evaluating statements like

if ((A > 4) || (B < 0))
• If A is 5 we do not have to check on B!
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Alpha-Beta Pruning
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Alpha-Beta Pruning
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Why is it called alpha-beta?
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The Alpha-Beta Algorithm

• alpha (α) is value of best (highest value) choice 
for MAX

• beta (β) is value of best (lowest value) choice 
for MIN

• If at a MIN node and value  ≤ α, stop looking, 
because MAX node will ignore this choice

• If at a MAX node and value  ≥ β beta, stop 
looking because MIN node will ignore this 
choice
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Properties of Alpha-Beta

• Pruning does not affect final result
• Good move ordering improves effectiveness of 

pruning
• With “perfect ordering” time complexity bm/2 and 

so doubles solvable depth
• A simple example of the value of reasoning about 

which computations are relevant (a form of meta-
reasoning)

• Unfortunately, 3550 is still impossible, so chess not 
completely soluble
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Cutoffs and Heuristics
• Cut off search according to some cutoff test

– Simplest is a depth limit
• Problem: payoffs are defined only at terminal states
• Solution: Evaluate the pre-terminal leaf states using heuristic evaluation 

function rather than using the actual payoff function
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Cutoff Value

• To handle the cutoff, in minimax or alpha-beta 
search we can make an alteration by making 
use of a cutoff value

 
• MinimaxCutof is identical to MinimaxValue 

except
1. Terminal test is replaced by Cutof test, which indicates 

when to apply the evaluation function
2. Utility is replaced by Evaluation function, which 

estimates the position’s utility
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Example: Chess (I)
• Assume MAX is white
• Assume each piece has the following material value:

– pawn = 1
– knight = 3
– bishop = 3
– rook = 5
– queen = 9

• let w = sum of the value of white pieces
• let b = sum of the value of black pieces
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Example: Chess (II)

• The previous evaluation function naively gave the same 
weight to a piece regardless of its position on the board...
– Let Xi be the number of squares the i-th piece attacks
– Evaluation(n) = piece1value * X1 + piece2value * X2 + ...
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Example: Chess (III)

• Heuristics based on database search
– Statistics of wins in the position under 

consideration
– Database defining perfect play for all positions 

involving X or fewer pieces on the board 
(endgames)

– Openings are extensively analysed, so can play the 
first few moves “from the book”
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Deterministic Games in Practice 

• Draughts: Chinook ended 40-year-reign of human world champion 
Marion Tinsley in 1994. Used an endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a 
total of 443,748,401,247 positions

• Chess: Deep Blue defeated human world champion Gary Kasparov 
in a six-game match in 1997. Deep Blue searches 200 million 
positions per second, used very sophisticated evaluation, and 
undisclosed methods for extending some lines of search up to 40 
ply
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Deterministic Games in Practice

• Othello: human champions 
refuse to compete against 
computers, who are too good

• Go: a challenging game for AI 
(b > 300) so progress much 
slower with computers. 
AlphaGo was a recent 
breakthrough
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See more at: University of Alberta GAMES Group

http://webdocs.cs.ualberta.ca/~games/


Summary

• Games have been an AI topic since the beginning. They 
illustrate several important features of AI:
– perfection is unattainable so must approximate
– good idea to think about what to think about
– uncertainty constrains the assignment of values to states 
– optimal decisions depend on information state, not real state

• Next lecture:
– We have now finished with the topic of search so we will 

move on to knowledge representation
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