

Lecture 18: Expert Systems and Ontologies

Overview

- Last time
 - Structured objects for knowledge representation

• Today

- Expert systems
 - General features and architecture
- One of the most important expert systems: MYCIN
- General problems with rule-based expert systems
- Ontologies
- Learning outcome covered today:

Identify or describe some of the major applications of AI;

What is an Expert System?

- A expert system is a computing system that is capable of expressing and reasoning about some domain of specialist knowledge
- Typical domains are
 - medicine (INTERNIST, MYCIN, ...)
 - geology (PROSPECTOR)
 - chemical analysis (DENDRAL)
 - configuration of computers (R1)
 - law (British Nationality Act)

- The purpose of the expert system is to be able to solve problems or offer advice in that domain
- Rule-based expert systems were the big AI success story in the 80s, but later fell from favour

Architecture of an Expert System

Expert System Shell

Architecture of an Expert System

- Knowledge base holds the expertise that the system can deploy
 - Constructed by the knowledge engineer in consultation with the domain expert
- Most common KR scheme used is rules, and most ES use backward chaining
- Other KR schemes can be used: Frames (Internist); Semantic networks (Grebe); Bayesian networks (Prospector)
- In use, some facts are added to the working memory that represent *observations* about the domain
 - Typically user-supplied in response to questions

Architecture of an Expert System

- Inference engine makes inferences from the case specific data and the knowledge in the knowledge base
 - Leads to more questions as sub-goals are generated
- Backward chaining identifies what the system needs from the user
 - Some ES use a mixture of forward and backward chaining
- User interface for interaction

Legal Expert System

- citizen(X) :- bornIn(X,uk).
- citizen(X) :- father(Y,X), bornIn(Y,uk).
 - User: citizen(me)?
 - System: where were you born?
 - User: Malta.
 - Add bornIn(me,malta). First rule fails.
 - System: who is your father?
 - User: Colin
 - System: where was Colin born.
 - User: London.
 - Add bornIn(colin,uk), using fact in(london,uk). Succeeds
 - System: Yes.

www.stanford.edu

MYCIN

- One of the most important expert systems developed was MYCIN, a system for diagnosing and treating bacterial infections of the blood
- The name comes from the fact that most of the drugs used in the treatment of bacterial infections are called *"Something"*mycin
- MYCIN is intended to be used by a doctor, to provide advice when treating a patient
- The idea is that MYCIN can extend the expertise of the doctor in some specific area

Rules in MYCIN

Internally held in a Lisp-like syntax, but of the form

IF

- The gram stain of the organism is gramneg, and
- 2. The morphology of the organism is rod, and

The aerobicity of the organism is anaerobic
 THEN

there is suggestive evidence (0.6) that the identity of the organism is bacteroides.

• Antecedent can contain both AND and OR conditions

A Rule with OR Conditions

• A rule about treatment

IF
1. The therapy under consideration is:
 cephalothin, or
 clindamycin, or
 erythromycin, or
 lincomycin, or
 vancomycin
 and
2. Meningitis is a diagnosis for the patient

THEN

It is definite that the therapy under consideration is not a potential therapy.

Certainty Factors

- MYCIN needs a way to handle uncertainty, inherent in medical diagnosis
- Uses certainty factors (CFs), values between +1 and -1, about its conclusions
 - Positive value = suggestive evidence in support of the conclusion
 - Negative value = suggestive evidence against the conclusion
- Example: data of a particular organism relating to its Gram stain, morphology and aerobicity

GRAM = (GRMNEG 1.0) MORPH = (ROD 0.8) AIR = (ANAEROBIC 0.7)

Certainty Factors

- Each statement and rule has a certainty factor
- Statement AND statement use the minimum of the two CFs
- Statement OR statement use the maximum of the two CFs
- Rule: CF(antecedent) * CF(conclusion)
 - Combining conclusions from two rules: (CF(conclusion1)+CF(conclusion2)) minus (CF(conclusion1)*CF(conclusion2))
- Does NOT correspond to probability theory, but simple and tractable. Initial numbers not probabilities anyway!

Example

- R1: If P (0.4) and Q (0.7) then R (0.8)
- R2: If S (0.2) or T (0.5) then R (0.9).
- P and Q = 0.4
- S or T = 0.5
- R1 gives R = 0.32
- R2 gives R = 0.45
- Overall: 0.77 0.144 = 0.626

How MYCIN Works

- MYCIN has a four stage task
 - 1. decide which organisms, if any, are causing significant disease
 - 2. determine the likely identity of the significant organisms
 - 3. decide which drugs are potentially useful
 - 4. select the best drug, or combination of drugs
- Rules for each stage are in different partitions
- The control strategy for doing this is coded as metaknowledge

Main Rule

```
IF
```

- There is an organism which requires therapy, and
- Consideration has been given to possible other organisms which require therapy THEN
- 1. Compile a list of possible therapies, and
- 2. Determine the best therapy.
- ELSE

Indicate that the patient does not require therapy.

- Starts with some clinical observations: blood test results
- Backward chains until it needs more information
- Asks user (who may need to do further tests)
- When a sub-goal is complete, e.g. the organism is identified, moves on to next sub-goal

Example Consultation

1) Patient's name: (first-last)

```
** FRED BRAUN
```

- Sex
- ** M
- 3) Age
- ** 55
- 4) Are there any illnesses for Fred Braun which may be related to the present illness, and from which organisms have been grown in the microbiology laboratory?

** Y

```
----- CULTURE-1 -----
```

5) From what site was the specimen for CULTURE-1 taken?

** BLOD

= BLOOD

- Please give the date and time when CULTURE-1 was obtained.
- ** JUN 20 1977

Explanation dialogues could also be generated to show how MYCIN arrived at its conclusions.

Evaluation of MYCIN

- Evaluated by comparing its performance to 8 members of Stanford medical school: 5 faculty members, one research fellow in infectious diseases, one physician and one student
- They were given 10 randomly selected case histories and asked to come up with diagnoses and recommendations
- MYCIN performed as well as any of the Stanford medical team and considerably better than the physician or student

Use of MYCIN

- MYCIN has never been used in clinical practice due to:
 - expense of computing power required at the time
 - the amount of time and typing required for a session
 - incompleteness of the knowledge base
 - issues relating to professional responsibility; what if it was wrong?
- MYCIN was enormously influential
 - Almost all practical expert systems of the 80s and 90s used ideas from MYCIN
 - Fielded in domains where complete knowledge was available, responsibility issues less (not life critical, advice), and as computer power became cheap (micro computers)

Advantages of Expert Systems

- Declarative information: programming an ES involves capturing the expert's knowledge; not like programming a conventional system
 - failure to draw a conclusion; missing knowledge
 - drawing the wrong conclusion; a faulty statement
- Interface: user-friendly; inferences drawn are intended to be similar to those drawn by the experts
 - Promotes ease of maintenance by users
- Explanation: the ability to explain their conclusions
- Easy to extend and maintain: provided the domain does not change

Problems with Expert Systems

- Problems with construction
 - Knowledge acquisition bottleneck
 - Machine learning
- Problems with representation
 - What does "significant evidence" mean?
 - Handling uncertainty
- Problems with acceptance
 - Operational issues
 - Legal issues
 - Trust
- Problems with domain
 - Brittleness
 - Common sense knowledge (see CYC)

Ontologies

- Ontologies address some of the problems identified in semantic nets by providing a formalisation of a conceptualisation of a domain (Thomas Gruber)
- Ontologies are intended to
 - Provide a common well-defined vocabulary for understanding a domain
 - To share between people and software agents
 - Record design decisions
 - To make assumptions explicit
 - To facilitate merging and re-use
- An ontology for a KBS serves many of the purposes of a Data Dictionary for a DB

Winston's ZOOKEEPER

Z1: mammal(X):-hair(X). Z2: mammal(X):-givesMilk(X). Z3: bird(X):-feathers(X). Z4: bird(X):-flies(X), laysEggs(X). Z5: carnivore(X):- mammal(X), eats(X,meat). Z6: carnivore(X):- mammal(X), teeth(X,pointed), has(X,claws), eyes(X,forwardPointing). Z7: ungulate(X):- mammal(X), has(X.hoofs). Z8: ungulate(X):- mammal(X), chewsCud(X). Z9: cheetah(X):-carnivore(X), colour(X,tawny), spots(X,dark).

Works well enough. But: is it a satisfactory knowledge base? Z10: tiger(X):-carnivore(X), colour(X,tawny), stripes(X,black). Z11: giraffe(X):-ungulate(X), legs(X,long), neck(X,long), colour(X.tawny). spots(X,dark). Z12: zebra(X):-ungulate(X), colour(X,white). stripes(X,black). Z13: ostrich(X):-bird(X), not flies(X), legs(X,long), neck(X,long), colour(X,blackandwhite). Z14: penguin(X):-bird(X). swims(X). not flies(X). colour(X,blackandwhite). Z15: albatross(X):- bird(X), flies(X,well).

Exercise

• Do you think the Zookeeper knowledge base is satisfactory? If not, why not?

Problems

- Animals divided into mammals and birds:
 - Standard zoological taxonomy but is this exhaustive and disjoint?
- Mammals are divided into carnivores (what they eat) and ungulates (have hooves, what their feet are like).
 - Why this distinction? Exhaustive? Disjoint?
- Birds are not divided. Why not?
- Stripes are black and spots are dark. Same?
- Colour can be white or blackandwhite. Pattern?
- Albatross flies well. What counts as well?
- Lays eggs?
 - Observable? Only applies to females?

Consider the 20 Predicates

incompleteness

• Some present alternatives, enabling grouping

gaps

- skin covering {hair,feathers}
- colour{white, tawny,black and white}
- markings{spots,stripes}
- movesBy{swims,flies}
- feet{hoofs,claws}
- Sometimes only one option is given
 - teeth{pointed,?}
 - eats{meat,?}
 - legs{long,?}
 - neck{long,?}
 - stripes{black,?}
 - spots{dark,?}
 - flies{well,?}
 - eyes{point forward,?}

inconsistencies

25

Domain Vocabulary

- Let's devise a vocabulary for the domain:
 - What attributes do we want?
 - For these attributes: what values are possible?
- Will form the basis of entity-attribute-value triples to use in our rules

So: (added values in blue)

- skin covering {hair, feathers}
- colour{white, tawny, black, other}
- markings{spots, stripes, irregular}
- movesBy{swims, flies, neither}
- feet{hoofs, claws, toes}
- teeth{pointed, rounded, none}
- eats{meat, plants, fish}
- legs{long, normal}
- neck{long, normal}
- markingColour{dark, light} %replaces spots and stripes
- eyes{point forward, sideways}

Strict Specialisation

- The slot fillers are possible values not defaults
- As we go down the hierarchy we can only
 - Add attributes
 - e.g. A soldier has a rank a person does not
 - Remove values
 - Soldier has rank {private, sergeant, captain, general}
 - Officer has rank {captain, general}
- Strict Specialisation enables us to give a formal description, e.g. in first order logic:

 $\forall x \cdot officer(x) \Rightarrow (rank(x, captain) \lor rank(x, general))$

• However, Description Logic usually used (expressive KR scheme with tractable inference)

Current Work on Ontologies

- Many substantial ontologies have been developed
- Especially in the medical domain
- Example: <u>SNOMED</u>
 - "SNOMED Clinical Terms (SNOMED CT) is a dynamic, scientifically validated clinical health care terminology and infrastructure that makes health care knowledge more usable and accessible. The SNOMED CT Core terminology provides a common language that enables a consistent way of capturing, sharing and aggregating health data across specialties and sites of care."

Place of Ontologies in Modern Al

- Specific domain ontologies: but general purpose supposed to support many applications
 - The US National Center for Biomedical Ontology
 - SNOMED CT (311,000 medical concepts)
 - The Gene Ontology GO
 - <u>Foundational Model of Anatomy</u> (75,000 anatomical classes)
 - <u>SUMO Ontology</u>
 - "The goal . . . is to develop a standard upper ontology that will promote data interoperability, information search and retrieval, automated inferencing, and natural language processing."
- Knowledge about everything!
 - <u>CYC</u>, OpenCyc
- <u>Semantic Web</u>: Annotate Web pages with concepts defined in ontologies available on the Web
 - Improve accuracy of Web searches
 - Web searches will be able to generalise/specialise queries

Top level of the Foundational Model of Anatomy

Summary

- Expert systems were an important development in AI
- ES were mainly built using rules as their form of KR
- The MYCIN system is one of the best known examples of an ES
- Although ES have been influential, they have a number of disadvantages that led to them falling from popularity
- Ontologies provide a formalisation of a conceptualisation of a domain
- Ontologies have been successfully applied in the real world
- Ontologies can be given well-defined semantics using description logics
 Covered in COMP321
- Next time

– Logic

Acknowledgements

- The slides on the "Foundational Model of Anatomy" are from public material from
 - The Structural Informatics Group at the University of Washington (<u>http://sig.biostr.washington.edu/</u>)
 - A talk on Ontologies in Biomedicine by Mark Musen of Stanford University (

http://med.stanford.edu/profiles/Mark_Musen/)