
1

COMP219:
Artificial Intelligence

Lecture 24: Scheduling in Real World
Planning

Timetable

• Week 9 Tuesday: Scheduling
• Week 9 Thursday: Learning 1
• Week 9 Friday: Cancelled

• Week 10 Tuesday: Learning 2
• Week 10 Thursday: Learning 3
• Week 10 Friday: Cancelled

• Week 11 Tuesday: Class test 2
• Week 11 Thursday: Summary & class test solutions

2

Class Test 1 Results

• Results are out now
• Marks are displayed in the student office
• You can also collect your marked script

• Median mark 59

3

Class Test 1 Results

4

Class Test 1 Results

5

Overview

• Last time
– Classical planning; PDDL; planning as a SAT problem

• Today
– Planning in the real world

• Time and resource constraints

• Learning outcomes covered today:

Identify or describe approaches used to solve planning problems in AI
and apply these to simple examples

6

Real World Planning

• Classical planning decides what to do and in what order
• Planners used in the real world for planning and

scheduling operations for spacecraft, factories and military
campaigns need to talk about time (scheduling):
– how long an action takes
– when an action occurs
– e.g. an airline schedule assigning planes to flights needs to know

departure and arrival times
• The real world also imposes many resource constraints

– e.g. there is a limit on the number of pilots employed, and a
pilot can only fly one plane at any one time

7

Time
• In classical planning we assumed that:

– actions are instantaneous
– preconditions must hold before an action is taken
– the effects of an action persist

• Real world planning domains are more complex:
– actions take time to execute; how long an action takes to execute may

depend on the preconditions
– preconditions may need to hold during an action’s execution as well as before

it starts
– effects may not be true immediately or may persist for only a limited time
– an action may have multiple effects on a fluent at different times

• In scheduling we usually require a goal to be true at a given time
or over a given time interval

8

Planning with Time

• Examples:
– If I hire a carpet cleaning machine to clean my carpets, I

need to continue to have the machine while I am cleaning
my carpets

– If I push a lift button, the lift may take time to arrive and the
doors will only open for a limited time

– If I share a printer, my print job will have to wait until the
printer is available if someone else is currently printing

• Some actions may have to be taken concurrently:
– If a fuse blows, I have to strike a match and walk to the

fusebox while the match is burning

9

Resources

• A resource is a set of objects whose value or
availability determines whether an action can be
taken
– e.g. money, drivers, trucks, surgeons, power
– time is a resource which PDDL treats as a special case

• Resources can be consumable (e.g. fuel) or reusable
(e.g. a plane)

• Resources can be produced by actions (e.g. hire a car,
refuel a plane, grow a potato)

10

Planning with Resources
• A solution is a plan that achieves the goals while allocating

resources to actions such that all resource constraints are satisfied

• A satisficing plan achieves the goals without violating any
temporal and resource constraints
– e.g. deliver all packages by 09.00

• An optimal plan achieves the goals while minimising (or
maximising) a cost function, often defined in terms of resource
usage
– e.g. deliver all packages by 09.00, minimising the number of planes and

fuel required

11

Scheduling Approach

• One approach to scheduling is to plan first and schedule
later

• Divide the overall problem into
– Planning phase: select actions (with some ordering

constraints) to meet the goals: partially ordered plan
– Scheduling phase: add temporal information to ensure it

meets resource and deadline constraints

• This approach is common in real-world manufacturing
and logistical domains, where the planning phase is
often done by human experts

12

Example: Assembly of Cars
Jobs({AddEngine1 AddWheels1 Inspect1 }, ≺ ≺
 {AddEngine2 AddWheels2 Inspect2 })≺ ≺
Resources(EngineHoists(1), WheelStations(1), Inspectors(2),
LugNuts(500))
Action(AddEngine1, DURATION: 30, USE: EngineHoists(1))
Action(AddEngine2, DURATION: 60, USE: EngineHoists(1))
Action(AddWheels1, DURATION: 30, CONSUME: LugNuts(30),
 USE: WheelStations(1))
Action(AddWheels2, DURATION: 15, CONSUME: LugNuts(20),
 USE: WheelStations(1))
Action(Inspecti, DURATION: 10, USE: Inspectors(1))

• Each job has a set of actions with ordering constraints
• A B means that action A must precede action B≺
• Each action has a duration and a set of resource constraints
• Each constraint specifies type, number and consumable/reusable

13Example from Chapter 11 of AIAMA

Aggregation
• If all objects are indistinguishable w.r.t. the purpose of the plan,

complexity can be reduced by grouping individual objects into quantities
– called aggregation
– e.g. Inspectors(2) instead of Inspector(Bob), Inspector(Jane)

because it does not matter which inspector inspects the car in our problem, so
we don’t need to make the distinction

• Consider a schedule proposing 10 concurrent inspections when there
are only 9 available inspectors:
– Inspectors represented as quantities – failure detected immediately, backtrack

and try another schedule

– Inspectors as individuals – algorithm backtracks to try all 10! ways of assigning
inspectors to actions

14

Time Constraints: Critical Path
Method

• To minimise the plan duration, must find the earliest start times for all actions
consistent with the ordering constraints

• Critical path method can find the possible start and end times for each action

• A path is a linearly ordered sequence of actions beginning with Start and ending
with Finish

• The critical path: path with the longest total duration; ‘critical’ because it
determines the duration of the entire plan:
– Shortening other paths does not shorten the whole plan, BUT delaying the start of

any action on the critical path slows down the entire plan

• Actions not on the critical path have a window of time in which they can be
executed: LS − ES is known as the slack for the action (ES earliest possible start
time, LS latest possible start time)

• A schedule is the ES and LS times for all the actions
15

• Representation of temporal constraints
• Slack = LS - ES
• Actions with zero slack are on critical path

Example: Assembly of Cars

16

Duration Earliest and Latest Start times [ES,LS]

Example: Assembly of Cars

• Solution as a timeline

17

Time interval during which action can be taken (respecting order constraints)

Slack

Resource Constraints
• Finding a minimum-duration schedule given a partial ordering on

actions and no resource constraints is easy:
– Any action can be executed in parallel with any other unless this is

prohibited by the partial order specified in the plan

• Resource constraints impose additional restrictions on the
ordering of actions – actions which require the same resources
can’t be executed at the same time
– e.g. two AddEngine actions begin at the same time but both require

the same EngineHoist and so a constraint “cannot overlap” must be
added

• Scheduling with resource constraints is complex

18

Example: Assembly of Cars with
Resource Constraints

• Solution incorporates “cannot overlap” constraint
• Fastest solution takes 115 mins (30 mins longer)
• No time when both inspectors needed, so only need one for

this solution

19

Exercise
• Draw a diagram to represent the temporal constraints of the following scheduling problem (assume start

time [0,0]) and indicate the critical path:

Jobs({GetBread MakeToast ButterToast}, {GetEggs BoilEggs})≺ ≺ ≺

Resources(Butter(1), Bread(2), Eggs(2), Water(500), Toaster(1),
Knife(1), Pan(1))

Action(GetBread, DURATION: 1, USE: Bread(2))

Action(MakeToast, DURATION: 6, USE: Toaster(1), Bread(2))

Action(ButterToast , DURATION: 1, CONSUME: Butter(1), USE: Knife(1))

Action(GetEggs, DURATION: 1, USE: Eggs(2))

Action(BoilEggs, DURATION: 9, USE: Pan(1), Eggs(2), Water(500))

Solution

Start

[0,0]

GetBread
1

[0,2]

MakeToast
6

[1,3]

ButterToast
1

[7,9]

Finish

[10,10]

GetEggs
1

[0,0]

BoilEggs
9

[1,1]

Reducing Complexity

• Complexity of scheduling with resource constraints is often
seen in practice
– e.g. challenge posed in 1963 to find the optimal schedule for a problem involving

10 machines and 10 jobs of 100 actions went unsolved for 23 years (Lawler et al.
1993)

• Minimum slack algorithm heuristic
REPEAT
IF (unscheduled(A) AND all_predec_scheduled(A)
 AND least_slack(A))
THEN schedule A for earliest possible start;
UPDATE ES and LS for all affected actions;
UNTIL solution produced

- But for car assembly problem, solution longer (130 mins)
Integrating planning and scheduling is active area of research

22

Managing Complexity: Hierarchical
Decomposition

• State-of-the art planning algorithms can generate plans with
thousands of actions

• However some planning tasks involve millions of actions, e.g.
– Planning military operations
– Plans executed by the human brain: to move about, if this

is planned at the level of muscle activations (about 103
muscles, activation can be modulated 10 times per second,
so planning for just one hour may involve more than 3
million actions)

• Solution: plan at a higher level of abstraction, e.g. instead of
muscle activations, just an action ‘walk to the shop’, then
refine if necessary

23

Example: Holiday

• A reasonable plan might be
[Go to Manchester Airport; Take Emirates Air flight 778 to Dubai; Do
holiday stuff for 2 weeks; Go to Dubai Airport; Take Emirates Air flight
779 to Manchester; Go home]

• Each action in the plan is a planning task in itself
– e.g. ‘Go to Manchester Airport’ may have a solution [Drive to the

airport car-park; park; take the shuttle bus to the terminal]
• Each of these actions may then be decomposed further until

we reach the right level of actions
• Hierarchical decomposition
• Recall discussion about ‘right’ level of abstraction w.r.t. search

24

Hierarchical Decomposition

• Software: Hierarchy of subroutines or object classes
• Armies: hierarchy of units
• Government and corporations: hierarchy of

departments, subsidiaries, branch offices
• Key benefit: at each level of the hierarchy a

computational task, military mission or
administrative function is reduced to a smaller
number of activities at the next lower level
– Computational cost of solving a planning problem is small

25

Hierarchical Task Networks

• HTN similar to classical planning:
– States are sets of fluents (ground atomic formulae)
– Actions correspond to deterministic state transitions

• Planning domain description extended:
methods for decomposing tasks into subtasks

• Primitive actions: set of possible actions
• High-level actions: higher level abstraction of

actions

26

High-Level Actions

• Each HLA has one or more possible refinements into
a sequence of actions

• Each refinement may include HLAs or primitive
actions

• Primitive actions by definition have no refinements
• Refinements may be recursive
• An HLA refinement that contains only primitive

actions is called an implementation of the HLA

27

Example Refinement: Holiday

The action ‘Go to Manchester Airport’ represented
as Go(Home,MAN) might have two possible
refinements:

Refinement(Go(Home,MAN),
STEPS: [Drive(Home,MANLongStayParking),

Shuttle(MANLongStayParking,MAN])

Refinement(Go(Home,MAN),
STEPS: [Taxi(Home,MAN)])

28

Example Refinement: Vacuum World

Refinement(Navigate([a,b],[x,y]),
 PRECOND: a=x ∧ b=y
 STEPS: [])

Refinement(Navigate([a,b],[x,y]),
 PRECOND: Connected([a,b],[a - 1,b]),
 STEPS: [Left, Navigate([a - 1,b],[x,y])

Refinement(Navigate([a,b],[x,y]),
 PRECOND: Connected([a,b],[a + 1,b]),
 STEPS: [Right, Navigate([a + 1,b],[x,y])

• Recursive refinement: to get to a destination, take a step, and
then go to the destination

• [Right,Right,Down] and [Down,Right,Right] are both
implementations of the HLA Navigate([1,3],[3,2])

29

High-Level Plan

• A high-level plan is a sequence of HLAs

• An implementation of a high-level plan is the concatenation
of implementations of each HLA in the sequence

• A high-level plan achieves the goal from a given state if at
least one of its implementations achieves the goal from that
state
– Not all implementations need to achieve the goal

• If a HLA has exactly one implementation, can compute
preconditions and effects as if it were a primitive action

30

Summary

• Planning in the real world
– Time constraints, critical path method, minimum slack
– Resource constraints, abstraction, Hierarchical Task

Networks
• This concludes our consideration of the topic

Planning

• Next time
– Machine learning

31

	COMP219: Artificial Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Real World Planning
	Time
	Planning with Time
	Resources
	Planning with Resources
	Scheduling Approach
	Example: Assembly of Cars
	Aggregation
	Time Constraints: Critical Path Method
	Example: Assembly of Cars
	Example: Assembly of Cars
	Resource Constraints
	Example: Assembly of Cars with Resource Constraints
	Exercise
	Slide 21
	Reducing Complexity
	Managing Complexity: Hierarchical Decomposition
	Example: Holiday
	Hierarchical Decomposition
	Hierarchical Task Networks
	High-Level Actions
	Example Refinement: Holiday
	Example Refinement: Vacuum World
	High-Level Plan
	Summary

