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COMP219:
Artificial Intelligence

Lecture 24: Scheduling in Real World 
Planning



Timetable

• Week 9 Tuesday: Scheduling
• Week 9 Thursday: Learning 1
• Week 9 Friday: Cancelled

• Week 10 Tuesday: Learning 2
• Week 10 Thursday: Learning 3
• Week 10 Friday: Cancelled

• Week 11 Tuesday: Class test 2
• Week 11 Thursday: Summary & class test solutions
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Class Test 1 Results

• Results are out now
• Marks are displayed in the student office
• You can also collect your marked script

• Median mark 59
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Class Test 1 Results
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Class Test 1 Results
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Overview

• Last time
– Classical planning; PDDL; planning as a SAT problem

• Today
– Planning in the real world

• Time and resource constraints

• Learning outcomes covered today:

Identify or describe approaches used to solve planning problems in AI 
and apply these to simple examples 
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Real World Planning

• Classical planning decides what to do and in what order
• Planners used in the real world for planning and 

scheduling operations for spacecraft, factories and military 
campaigns need to talk about time (scheduling):
– how long an action takes
– when an action occurs
– e.g. an airline schedule assigning planes to flights needs to know 

departure and arrival times
• The real world also imposes many resource constraints

– e.g. there is a limit on the number of pilots employed, and a 
pilot can only fly one plane at any one time
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Time
• In classical planning we assumed that:

– actions are instantaneous
– preconditions must hold before an action is taken
– the effects of an action persist

• Real world planning domains are more complex:
– actions take time to execute; how long an action takes to execute may 

depend on the preconditions
– preconditions may need to hold during an action’s execution as well as before 

it starts
– effects may not be true immediately or may persist for only a limited time
– an action may have multiple effects on a fluent at different times

• In scheduling we usually require a goal to be true at a given time 
or over a given time interval
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Planning with Time

• Examples:
– If I hire a carpet cleaning machine to clean my carpets, I 

need to continue to have the machine while I am cleaning 
my carpets

– If I push a lift button, the lift may take time to arrive and the 
doors will only open for a limited time

– If I share a printer, my print job will have to wait until the 
printer is available if someone else is currently printing

• Some actions may have to be taken concurrently:
– If a fuse blows, I have to strike a match and walk to the 

fusebox while the match is burning
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Resources

• A resource is a set of objects whose value or 
availability determines whether an action can be 
taken
– e.g. money, drivers, trucks, surgeons, power
– time is a resource which PDDL treats as a special case

• Resources can be consumable (e.g. fuel) or reusable 
(e.g. a plane)

• Resources can be produced by actions (e.g. hire a car, 
refuel a plane, grow a potato)
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Planning with Resources
• A solution is a plan that achieves the goals while allocating 

resources to actions such that all resource constraints are satisfied

• A satisficing plan achieves the goals without violating any 
temporal and resource constraints
– e.g. deliver all packages by 09.00

• An optimal plan achieves the goals while minimising (or 
maximising) a cost function, often defined in terms of resource 
usage 
– e.g. deliver all packages by 09.00, minimising the number of planes and 

fuel required
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Scheduling Approach

• One approach to scheduling is to plan first and schedule 
later

• Divide the overall problem into
– Planning phase: select actions (with some ordering 

constraints) to meet the goals: partially ordered plan
– Scheduling phase: add temporal information to ensure it 

meets resource and deadline constraints

• This approach is common in real-world manufacturing 
and logistical domains, where the planning phase is 
often done by human experts
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Example: Assembly of Cars
Jobs({AddEngine1  AddWheels1  Inspect1 }, ≺ ≺
        {AddEngine2  AddWheels2  Inspect2 })≺ ≺
Resources(EngineHoists(1), WheelStations(1), Inspectors(2), 
LugNuts(500))
Action(AddEngine1, DURATION: 30, USE: EngineHoists(1))
Action(AddEngine2, DURATION: 60, USE: EngineHoists(1))
Action(AddWheels1, DURATION: 30, CONSUME: LugNuts(30), 
           USE: WheelStations(1))
Action(AddWheels2, DURATION: 15, CONSUME: LugNuts(20), 
           USE: WheelStations(1))
Action(Inspecti, DURATION: 10, USE: Inspectors(1))

• Each job has a set of actions with ordering constraints
• A  B means that action A must precede action B≺
• Each action has a duration and a set of resource constraints
• Each constraint specifies type, number and consumable/reusable

13Example from Chapter 11 of AIAMA



Aggregation
• If all objects are indistinguishable w.r.t. the purpose of the plan, 

complexity can be reduced by grouping individual objects into quantities 
– called aggregation
– e.g. Inspectors(2) instead of Inspector(Bob), Inspector(Jane) 

because it does not matter which inspector inspects the car in our problem, so 
we don’t need to make the distinction

• Consider a schedule proposing 10 concurrent inspections when there 
are only 9 available inspectors:
– Inspectors represented as quantities – failure detected immediately, backtrack 

and try another schedule

– Inspectors as individuals – algorithm backtracks to try all 10! ways of assigning 
inspectors to actions
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Time Constraints: Critical Path 
Method

• To minimise the plan duration, must find the earliest start times for all actions 
consistent with the ordering constraints

• Critical path method can find the possible start and end times for each action

• A path is a linearly ordered sequence of actions beginning with Start and ending 
with Finish

• The critical path: path with the longest total duration; ‘critical’ because it 
determines the duration of the entire plan:
– Shortening other paths does not shorten the whole plan, BUT delaying the start of 

any action on the critical path slows down the entire plan

• Actions not on the critical path have a window of time in which they can be 
executed: LS − ES is known as the slack for the action (ES earliest possible start 
time, LS latest possible start time)

• A schedule is the ES and LS times for all the actions
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• Representation of temporal constraints
• Slack = LS - ES
• Actions with zero slack are on critical path

Example: Assembly of Cars
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Duration Earliest and Latest Start times [ES,LS]



Example: Assembly of Cars

• Solution as a timeline
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Time interval during which action can be taken (respecting order constraints)

Slack



Resource Constraints
• Finding a minimum-duration schedule given a partial ordering on 

actions and no resource constraints is easy:
– Any action can be executed in parallel with any other unless this is 

prohibited by the partial order specified in the plan

• Resource constraints impose additional restrictions on the 
ordering of actions – actions which require the same resources 
can’t be executed at the same time
– e.g. two AddEngine actions begin at the same time but both require 

the same EngineHoist and so a constraint “cannot overlap” must  be 
added

• Scheduling with resource constraints is complex
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Example: Assembly of Cars with 
Resource Constraints

• Solution incorporates “cannot overlap” constraint 
• Fastest solution takes 115 mins (30 mins longer)
• No time when both inspectors needed, so only need one for 

this solution
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Exercise
• Draw a diagram to represent the temporal constraints of the following scheduling problem (assume start 

time [0,0]) and indicate the critical path:

Jobs({GetBread  MakeToast  ButterToast}, {GetEggs  BoilEggs})≺ ≺ ≺

Resources(Butter(1), Bread(2), Eggs(2), Water(500), Toaster(1),  
Knife(1), Pan(1))

Action(GetBread, DURATION: 1, USE: Bread(2))

Action(MakeToast, DURATION: 6, USE: Toaster(1), Bread(2))

Action(ButterToast , DURATION: 1, CONSUME: Butter(1), USE: Knife(1))

Action(GetEggs, DURATION: 1, USE: Eggs(2))

Action(BoilEggs, DURATION: 9, USE: Pan(1), Eggs(2), Water(500))



Solution

Start

[0,0]

GetBread
1

[0,2]

MakeToast
6

[1,3]

ButterToast
1

[7,9]

Finish

[10,10]

GetEggs
1

[0,0]

BoilEggs
9

[1,1]



Reducing Complexity

• Complexity of scheduling with resource constraints is often 
seen in practice
– e.g. challenge posed in 1963 to find the optimal schedule for a problem involving 

10 machines and 10 jobs of 100 actions went unsolved for 23 years (Lawler et al. 
1993)

• Minimum slack algorithm heuristic 
REPEAT
IF (unscheduled(A) AND all_predec_scheduled(A) 
   AND least_slack(A))
THEN schedule A for earliest possible start; 
UPDATE ES and LS for all affected actions;
UNTIL solution produced

- But for car assembly problem, solution longer (130 mins)
Integrating planning and scheduling is active area of research
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Managing Complexity: Hierarchical 
Decomposition

• State-of-the art planning algorithms can generate plans with 
thousands of actions

• However some planning tasks involve millions of actions, e.g.
– Planning military operations
– Plans executed by the human brain: to move about, if this 

is planned at the level of muscle activations (about 103 
muscles, activation can be modulated 10 times per second, 
so planning for just one hour may involve more than 3 
million actions)

• Solution: plan at a higher level of abstraction, e.g. instead of 
muscle activations, just an action ‘walk to the shop’, then 
refine if necessary
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Example: Holiday

• A reasonable plan might be
[Go to Manchester Airport; Take Emirates Air flight 778 to Dubai; Do 
holiday stuff for 2 weeks; Go to Dubai Airport; Take Emirates Air flight 
779 to Manchester; Go home]

• Each action in the plan is a planning task in itself
– e.g. ‘Go to Manchester Airport’ may have a solution [Drive to the 

airport car-park; park; take the shuttle bus to the terminal]
• Each of these actions may then be decomposed further until 

we reach the right level of actions
• Hierarchical decomposition
• Recall discussion about ‘right’ level of abstraction w.r.t. search
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Hierarchical Decomposition

• Software: Hierarchy of subroutines or object classes
• Armies: hierarchy of units
• Government and corporations: hierarchy of 

departments, subsidiaries, branch offices
• Key benefit: at each level of the hierarchy a 

computational task, military mission or 
administrative function is reduced to a smaller 
number of activities at the next lower level
– Computational cost of solving a planning problem is small
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Hierarchical Task Networks

• HTN similar to classical planning:
– States are sets of fluents (ground atomic formulae)
– Actions correspond to deterministic state transitions

• Planning domain description extended: 
methods for decomposing tasks into subtasks

• Primitive actions: set of possible actions
• High-level actions: higher level abstraction of 

actions
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High-Level Actions

• Each HLA has one or more possible refinements into 
a sequence of actions

• Each refinement may include HLAs or primitive 
actions

• Primitive actions by definition have no refinements
• Refinements may be recursive
• An HLA refinement that contains only primitive 

actions is called an implementation of the HLA
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Example Refinement: Holiday

The action ‘Go to Manchester Airport’ represented 
as Go(Home,MAN) might have two possible 
refinements:

Refinement(Go(Home,MAN),
STEPS: [Drive(Home,MANLongStayParking), 

Shuttle(MANLongStayParking,MAN])

Refinement(Go(Home,MAN),
STEPS: [Taxi(Home,MAN)])
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Example Refinement: Vacuum World

Refinement(Navigate([a,b],[x,y]),
    PRECOND: a=x   ∧ b=y
    STEPS: [])

Refinement(Navigate([a,b],[x,y]),
    PRECOND: Connected([a,b],[a - 1,b]), 
    STEPS: [Left, Navigate([a - 1,b],[x,y])

Refinement(Navigate([a,b],[x,y]),
    PRECOND: Connected([a,b],[a + 1,b]), 
    STEPS: [Right, Navigate([a + 1,b],[x,y])

• Recursive refinement: to get to a destination, take a step, and 
then go to the destination

• [Right,Right,Down] and [Down,Right,Right] are both 
implementations of the HLA           Navigate([1,3],[3,2]) 
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High-Level Plan

• A high-level plan is a sequence of HLAs

• An implementation of a high-level plan is the concatenation 
of implementations of each HLA in the sequence

• A high-level plan achieves the goal from a given state if at 
least one of its implementations achieves the goal from that 
state
– Not all implementations need to achieve the goal

• If a HLA has exactly one implementation, can compute 
preconditions and effects as if it were a primitive action
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Summary

• Planning in the real world
– Time constraints, critical path method, minimum slack
– Resource constraints, abstraction, Hierarchical Task 

Networks
• This concludes our consideration of the topic 

Planning

• Next time
– Machine learning
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