
Explaining Learned Reward Functions
with Counterfactual Trajectories⋆

Jan Wehner1,∗, Frans Oliehoek2 and Luciano Calvante Siebert2

1CISPA Helmholtz Center for Information Security
2Delft University of Technology

Abstract
Learning rewards from human behavior or feedback is a promising approach to aligning AI systems with human
values but fails to consistently extract correct reward functions. Interpretability tools could enable users to
understand and evaluate possible flaws in learned reward functions. We propose Counterfactual Trajectory
Explanations (CTEs) to interpret reward functions in Reinforcement Learning by contrasting an original and a
counterfactual trajectory and the rewards they each receive. We derive six quality criteria for CTEs and propose
a novel Monte-Carlo-based algorithm for generating CTEs that optimizes these quality criteria. To evaluate how
informative the generated explanations are to a proxy-human model, we train it to predict rewards from CTEs.
CTEs are demonstrably informative for the proxy-human model, increasing the similarity between its predictions
and the reward function on unseen trajectories. Further, it learns to accurately judge differences in rewards
between trajectories and generalizes to out-of-distribution examples. Although CTEs do not lead to a perfect
prediction of the reward, our method, and more generally the adaptation of XAI methods, are presented as a
fruitful approach for interpreting learned reward functions and thus enabling users to evaluate them.

Keywords
Value Alignment, Reward Learning, Explainable AI, Counterfactual Explanations

1. Introduction

As Reinforcement Learning (RL) models grow in their capabilities and adoption in real-world applications
[1, 2, 3], we must ensure that they are safe and aligned with human values. A core difficulty of achieving
trustworthy and controllable AI [4, 5] is to accurately capture human intentions and preferences in
the reward function on which the RL agent is trained since the reward function will shape the agent’s
objectives and behaviour. For many tasks, it is hard to manually specify a reward function that accurately
represents the intentions, preferences, or values of designers, users or society at large [6, 7]. Reward
Learning is a set of techniques that circumvents this problem by instead learning the reward function
from data. For example, Preference-based RL [8] derives a reward function from preference judgments
queried from a human and has recently been applied to control the behaviour of Large Language
Models [9]. Similarly, Inverse RL [10], which is commonly used in autonomous driving and robotics,
aims to retrieve the reward function of an expert from the demonstrations they generate. Reward
learning is a promising approach for aligning the reward functions of AI systems with the intentions
of humans [5, 11]. It has significant advantages over behavioral cloning, which learns a policy by
using supervised learning on observation-action pairs since reward functions are considered the most
succinct, robust, and transferable definition of a task [12]. However, these techniques suffer from a
multitude of theoretical [13, 14] and practical problems [15] that make them unable to reliably learn
human values which are diverse [16], dynamic [17] and context-dependent [18].

We aim to develop interpretability tools that help humans to understand learned reward functions
so that they can detect misalignments with their own values. This is in line with the “Transparent
Value Alignment” framework in which Sanneman and Shah [19] suggest leveraging techniques from
eXplainable AI (XAI) to provide explanations about the reward function. The process of explaining
reward functions can be useful for both the understanding and explaining phases of the XAI pipeline [20],

Implementing AI Ethics through a Behavioural Lens — ECAI 2024 Workshop, October 19–20, 2024, Santiago de Compostela, Spain
∗Corresponding author.
Envelope-Open jan.wehner@cispa.de (J. Wehner)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:jan.wehner@cispa.de
https://creativecommons.org/licenses/by/4.0/deed.en

original

counterfactual

Reward(counterfactual) = +2
Reward(original) = +4

Figure 1: A car has originally taken a straight line and received a reward of +4 from the reward function. By
providing a counterfactual that receives a lower reward of +2 the user can make hypotheses about how the
reward function assigns rewards.

by enabling both developers and users to inspect reward functions. This is a relevant task for the XAI
community, as it contributes to the goal of enabling human users to understand, appropriately trust,
and produce more explainable models [20, 19]. However, there have been few attempts to interpret
reward functions and only Michaud et al. [21] attempt this for deep, learned reward functions. Our
work makes a novel connection between XAI and reward learning by providing, to the best of our
knowledge, the first principled application of counterfactual explanations to reward functions.

Counterfactual explanations are a popular XAI tool that has not yet, to the best of our knowledge,
been applied to explain reward functions. It helps humans to understand the predictions of ML models
by posing hypothetical “what-if” scenarios. Humans commonly use counterfactuals for decision-making,
learning from past experiences, and emotional regulation[22, 23, 24]. Thus users can intuitively reason
about and learn from counterfactual explanations, which makes this an effective and user-friendly mode
of explanation [25, 26, 27].
We propose Counterfactual Trajectory Explanations (CTEs) that serve as informative ex-

planations about deep reward functions. CTEs can be employed in a sequential decision-making
setting by contrasting an original with a counterfactual partial trajectory along with the rewards
assigned to them. This enables the user to draw inferences about what behaviours cause the reward
function to assign high or low rewards. For instance, consider the domain of autonomous driving
illustrated in Figure 1. While a given driving trajectory by itself might not provide much insight, adding
a counterfactual trajectory along with its reward allows a user to hypothesise that the reward function
negatively rewards the driving agent for swerving and getting close to the other lane.

In order to generate CTEs we identify and adapt six quality criteria for counterfactual explanations
from XAI and psychology and introduce two algorithms for generating CTEs that optimise for these
quality criteria. To evaluate how effective the generated CTEs are we introduce a novel measure of
informativeness in which a proxy-human model learns from the provided explanations. Implementation
details, ablations and further experiments can be found in the technical appendix. 1

2. Counterfactual Trajectory Explanations (CTEs)

This study focuses on adapting counterfactual explanations to interpret a learned reward function.
Counterfactual explanations alter the inputs to a given system, which causes a change in the outputs
[26]. When explaining reward functions the inputs could either be single states or (partial) trajectories.
Correspondingly, the outputs to be targeted can either be seen as rewards assigned to single states or
as the average reward assigned to the states in a (partial) trajectory. If we would only alter individual
states, multi-step plans could be overlooked and infeasible counterfactuals that cannot occur through

1The full code for the project is available at: https://github.com/janweh/Counterfactual-Trajectory-Explanations-for-Learned-
Reward-Functions

https://github.com/janweh/Counterfactual-Trajectory-Explanations-for-Learned-Reward-Functions
https://github.com/janweh/Counterfactual-Trajectory-Explanations-for-Learned-Reward-Functions

any sequence of actions might be created. By generating trajectories and showing their average rewards
we can provide the user with insights about which multi-step behaviours are incentivized by the reward
function, while also guaranteeing that counterfactuals are feasible. While it would be possible to
generate multiple counterfactuals per original, we only show the user one counterfactual to be able to
cover more original trajectories.

We operate in Markov Decision Processes consisting of states 𝑆, actions 𝐴, transition probabilities
𝑃 and a reward function 𝑅. Further, we denote a learned reward function as 𝑅𝜃 ∶ 𝑆 × 𝐴 ⇒ ℝ, a policy
trained for 𝑅𝜃 as 𝜋𝜃, full trajectories generated by a full play-through of the environment as 𝜏 and partial
trajectories as 𝑡 ⊆ 𝜏. Counterfactual Trajectory Explanations (CTEs) can now be defined as:

Definition 1. CTEs {(𝑡𝑜𝑟𝑔, 𝑟𝑜𝑟𝑔), (𝑡𝑐𝑓, 𝑟𝑐𝑓)} consist of an original and counterfactual partial trajectory and
their average rewards assigned by a reward function 𝑅𝜃. Both start in the state 𝑠𝑛 but then follow a different
sequence of actions resulting in different average rewards.

The difference in rewards can be causally explained by the difference in actions. If the agent had
chosen actions (𝑎𝑐𝑓𝑛 , ..., 𝑎𝑐𝑓𝑘) instead of (𝑎𝑜𝑟𝑔𝑛 , ..., 𝑎𝑜𝑟𝑔𝑚) resulting in 𝑡𝑐𝑓 instead of 𝑡𝑜𝑟𝑔 the reward function
𝑅𝜃 would have assigned an average reward 𝑟𝑐𝑓 instead of 𝑟𝑜𝑟𝑔. 2

We propose a method to address the following problem: Given a learned reward function 𝑅𝜃, a policy
𝜋𝜃 trained on 𝑅𝜃 and a full original trajectory 𝜏𝑜𝑟𝑔 generated by 𝜋𝜃, the task is to select a part of that
trajectory 𝑡𝑜𝑟𝑔 ⊆ 𝜏𝑜𝑟𝑔 and generate a counterfactual 𝑡𝑐𝑓 to it that starts in the same state 𝑠𝑛 so that the
resulting CTE is informative for an explainee to understand 𝑅𝜃.

3. Method

This Section presents the method used to generate CTEs. First, quality criteria that measure the quality
of an explanation are derived from the literature and combined into a scalar quality value. Then two
algorithms are introduced which generate CTEs by optimising for the quality value.

3.1. Determining the quality of CTEs

Counterfactual explanations are usually generated by optimising them for a loss function that determines
how good a counterfactual is [29]. This loss function combines multiple aspects, which we call “quality
criteria”.

3.1.1. Quality Criteria

By reviewing XAI literature we were able to identify 9 quality criteria that are used for counterfactual
explanations. These criteria are designed to make counterfactuals more informative to a human. Out of
these Causality, Resource and Actionability [30, 31, 32] are automatically achieved by our methods. We
are left with six quality criteria to optimise for which we adapt to judge the quality of CTEs.

1. Validity: Counterfactuals should lead to the desired difference in the output of the model [31, 32].
This difference in outputs makes it possible to causally reason about the changes in the inputs. We
maximise Validity as |𝑅𝜃(𝑡𝑜𝑟𝑔) − 𝑅𝜃(𝑡𝑐𝑓)|.
2. Proximity: The counterfactual should be similar to the original [30, 33, 32]. Thus we minimize

a measure based on the Modified Hausdorff distance [34] that finds the closest match between the
state-actions pairs in the two trajectories. The distance of state-action pairs is calculated as a weighted
sum of the Manhattan distance of the player positions, whether the same action was taken and the edit
distance between non-player objects in the environment.
3. Diversity: Explanations should cover the space of possible variables as well as possible [35, 36].

Consequently, each new CTE should establish novel information rather than repeating previously

2Examples of CTEs in the Emergency Environment [28] can be found in: https://drive.google.com/drive/folders
/1JMjwQM24BbDwL8vRnG3pST5hlvpzRfZM?usp=sharing

https://drive.google.com/drive/folders/1JMjwQM24BbDwL8vRnG3pST5hlvpzRfZM?usp=sharing
https://drive.google.com/drive/folders/1JMjwQM24BbDwL8vRnG3pST5hlvpzRfZM?usp=sharing

shown CTEs. Thus we maximize Diversity of a new CTE compared to previous CTEs. This is calculated
as the sum of the average difference between the new length of the trajectory and previous lengths, the
average difference in the new starting time in the environment and previous starting times, and the
fraction of previous trajectories that are of the same counterfactual direction. Counterfactual direction
can be upward or downward comparisons [37] when the reward of the counterfactual is higher or lower
than the original’s reward.
4. State importance: Counterfactual explanations should focus on important states that have a

significant impact on the trajectory outcome [36]. We aim to start counterfactual trajectories in critical
states, where the policy strongly favors some actions over others. We maximize the importance of a
starting state which is calculated as the policies negative entropy −∑𝑎∈𝐴 𝜋(𝑎|𝑠0) log 𝜋(𝑎|𝑠0) [36, 38].
5. Realisticness: The constellation of variables in a counterfactual should be likely to happen

[30, 32, 31]. In our setting, we want counterfactual trajectories that are likely to be generated by a
policy trained on the given reward function. Such a trajectory would likely score high on the reward
function. Thus we maximize: 𝑅𝜃(𝑡𝑐𝑓) − 𝑅𝜃(𝑡𝑜𝑟𝑔).
6. Sparsity: Counterfactuals should only change a few features compared to the original to make

it cognitively easier for a human to process the differences [30, 31, 32, 33]. Instead of meticulously
restricting the number of features that differ between states we lighten the cognitive load by incentivizing
CTEs to be short by minimizing: 𝑙𝑒𝑛(𝑡𝑜𝑟𝑔) + 𝑙𝑒𝑛(𝑡𝑐𝑓).

3.1.2. Combining quality criteria into a scalar quality value

After measuring the six quality criteria, we scalarise them into one quality value 𝜌 to be assigned to
a CTE. This is done by normalising the criteria and combining them into a weighted sum. Criteria
are normalised to [0, 1] by iteratively generating new CTEs with random weights and adapting the
minimum and maximum value the criteria take on.

The weights ω assigned to the quality criteria correspond to their relative importance. However,
this opens the question of how one should weigh the different quality criteria to generate the most
informative explanations for a certain user. To find the optimal set of weights we suggest a calibration
phase in which 𝑁 different sets of weights ω = {𝜔𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑗 , ..., 𝜔𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑗}

𝑁
𝑗=1 are uniformly sampled 𝜔𝑖 ∼

𝑈 (0, 1) and used to create CTEs. The CTE’s informativeness is tested and the set of weights that
produces the most informative CTEs to a specific user are chosen for further use.

3.2. Generation algorithms for CTEs

In order to generate CTEs we propose two algorithms that optimise for the aforementioned quality
value (see Section 3.1) along with a random baseline algorithm.

Algorithm 1 - Monte Carlo-based Trajectory Optimization (MCTO):
MCTO adapts Monte Carlo Tree Search (MCTS) to the task of generating CTEs. MCTS is a heuristic
search algorithm that has been applied to RL by modelling the problem as a game tree, where states and
actions are nodes and branches [39, 40]. It uses random sampling and simulations to balance exploration
and exploitation in estimating the Q-values of states and actions.

In contrast to MCTS, MCTO operates on partial trajectories instead of states, optimises for quality
values instead of rewards from the environment, adds a termination action which ends the trajectory
and applies domain-specific heuristics. Pseudocode 1 showcases the algorithm.

In MCTO nodes represent partial trajectories 𝑡, branches are actions 𝑎 and child nodes result from
parents by following the action in the connecting branch. Leaf nodes are terminated trajectories which
can occur from entering a terminal state in the environments or by selecting an additional terminal
action that is always available. MCTO optimises for the quality value 𝜌 of a CTE, which is being
measured at the leaf nodes. A CTE is derived by taking the partial trajectory in the leaf node as the
counterfactual 𝑡𝑐𝑓 and the subtrajectory of 𝜏𝑜𝑟𝑔 from starting state 𝑠𝑛 with the same length as 𝑡𝑐𝑓 as the
original 𝑡𝑜𝑟𝑔.

Algorithm 1 Monte Carlo Trajectory Optimization

Input: full trajectory 𝜏𝑜𝑟𝑔, environment 𝑒𝑛𝑣, actions 𝐴
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = [] % store candidate CTEs
for 𝑠𝑛 in 𝜏𝑜𝑟𝑔 do

𝑄 = [] % Q-values of trajectories
𝑡𝑐𝑓 = [𝑠𝑛]
repeat
for 𝑖 to 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

𝑡 𝑠𝑐𝑓 ← SELECTION(𝑡𝑐𝑓)
𝑡𝑒𝑐𝑓 ← EXPANSION(𝑡 𝑠𝑐𝑓)
𝜌 ← SIMULATION(𝑡𝑒𝑐𝑓)
𝑄 ← BACK-PROPAGATION(𝑄, 𝜌)

end for
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑄(𝑡𝑐𝑓, 𝑎))
𝑠𝑛 ← 𝑒𝑛𝑣.step(𝑠𝑛, 𝑎∗)
APPEND(𝑡𝑐𝑓, (𝑠𝑛, 𝑎∗))

until 𝑠𝑛 is 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
𝑡𝑜𝑟𝑔 = SUBSET(𝜏𝑜𝑟𝑔, 𝑠𝑛, |𝑡𝑐𝑓|) % Subtrajectory from

% 𝑠𝑛 with same lengths as 𝑡𝑐𝑓
APPEND(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, (𝑡𝑜𝑟𝑔, 𝑡𝑐𝑓))

end for
Return: 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝜌(𝑐)

Each state 𝑠𝑛 ∈ 𝜏𝑜𝑟𝑔 in the original trajectory is used as a potential starting point of the CTE by setting
it as the root of the tree and running MCTO. Out of these, the CTE with the highest quality value is
chosen. For a given state we choose the next action by repeating these four steps for a set number of
times (𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) before choosing the action 𝑎∗ with the highest Q-value:

1. SELECTION: A node in the tree, which still has unexplored branches is chosen. The choice
is made according to the Upper Confidence Bounds for Trees algorithm based on the estimated
Q-value of the branches and the number of times the nodes and branches have already been
visited.

2. EXPANSION: After selecting a node, we choose a branch and create the resulting child node.

3. SIMULATION: One full playout is completed by sampling actions uniformly until the environment
terminates the trajectory or the terminating action is chosen. At each step, the terminal action
is chosen with a probability of 𝑝𝑀𝐶𝑇𝑂(𝑒𝑛𝑑). The resulting CTE’s quality value 𝜌 is evaluated
according to the quality criteria.

4. BACK-PROPAGATION: 𝜌 is back-propagated up the tree to adjust the Q-values of previous nodes
𝑡: 𝑄(𝑡) = 1

𝑁 (𝑡) (𝜌 − 𝑄(𝑡)).

As an efficiency-increasing heuristic, we prune off branches of actions that have a likelihood 𝜋𝜃(𝑎|𝑠) ≤
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎 to be chosen by the policy. Furthermore, we choose not to employ a discount factor (𝛾 = 1)
when back-propagating 𝜌, since this would incentivize shorter CTEs while this is already done by the
Sparsity criterion. Ablations showed that other heuristics such as choosing actions in the simulation
based on the policy 𝜋𝜃 or basing the decisions for expansion on an early estimate of the 𝜌 did not
improve performance.
Algorithm 2 - Deviate and Continue (DaC):

The Deviate and Continue (DaC) algorithm creates a counterfactual trajectory 𝑡𝑐𝑓 by deviating from the
original trajectory 𝜏𝑜𝑟𝑔 before continuing by choosing actions according to policy 𝜋𝜃. Starting in a state

Preferences
(1) Reward
 Learning

CTE
torg,rorg;

tcf,rcf

Proxy-human
model M?

(4) Supervised
Learning

Policy ? ?

trajectory
?org

(3) Extract
Features

Rating of
CTEs

(2) Generate
CTEs

Explanation
method

Quality
criteria

Learned Reward
function R?

Train
Policy

Features
& Labels
F(torg), rorg;

F(tcf), rcf

(5) Measure
 Similarity

Evaluation

Generation

Potential
 CTEs

Figure 2: Schematic that describes how rewards are learned (1), explanations are generated (2) and evaluated
(3,4&5).

𝑠𝑛 ∈ 𝜏𝑜𝑟𝑔, the deviation is performed by sampling an action from the policy 𝜋𝜃 that leads to a different
state than in the original trajectory. After 𝑛𝑑𝑒𝑣 𝑖𝑎𝑡𝑖𝑜𝑛𝑠 such deviations 𝑡𝑐𝑓 is continued by following 𝜋𝜃.
During the continuation, there is a 𝑝𝐷𝑎𝐶(𝑒𝑛𝑑) chance per step of ending both 𝑡𝑜𝑟𝑔 and 𝑡𝑐𝑓. This process
is repeated for every state 𝑠𝑛 ∈ 𝜏𝑜𝑟𝑔 and the resulting CTE with the highest quality value is chosen.
Baseline Algorithm - Random As a weak baseline, we compare our algorithms to randomly

generated CTEs. A start state 𝑠𝑛 of the counterfactual is uniformly chosen from the original trajectory
𝜏𝑜𝑟𝑔. From there actions are uniformly sampled, while the trajectories have a 𝑝𝑅𝑎𝑛𝑑𝑜𝑚(𝑒𝑛𝑑) chance of
being ended in each timestep.

4. Evaluation

This Section details the experimental approach we take to evaluate the informativeness of CTEs.
We want to automatically measure how well an explainee can understand a reward function from
explanations, while similar works perform user studies or do not offer quantitative evaluations. Since
previous methods for interpreting reward functions are not applicable to our evaluation setup we can
only compare our proposed methods with a baseline and criteria with each other. Our evaluation
approach includes learning a reward function, generating CTEs about it and measuring how informative
the CTEs are for a proxy-human model (see Figure 2).

4.1. Generating reward functions and CTEs

To learn a reward function (1) we first generate expert demonstrations. A policy 𝜋∗ is trained on a
ground-truth reward 𝑅∗ via Proximal Policy Optimization (PPO) [41]. This policy is used to generate
1000 expert trajectories τ𝑒𝑥𝑝 = {𝜏𝑒𝑥𝑝𝑘}

1000
𝑘=1 . Secondly, we use Adversarial IRL [42] which derives a robust

reward function 𝑅𝜃 and policy 𝜋𝜃 from the demonstrations by posing the IRL problem as a two-player
adversarial game between a reward function and a policy optimizer.

We use the Emergency environment [28], a Gridworld environment that represents a burning building
where a player needs to rescue humans and reduce the fire. The environment 7 humans that need
to be rescued, a fire extinguisher which can lessen the fire and obstacles which block the agent from
walking through. In each timestep, the player can walk or interact in one of the four directions. This
environment is computationally cheap and simple to investigate. However, it is still interesting to study
since the random initialisations require the reward function to generalise while taking into account
multiple sources of reward.

To make CTEs about 𝑅𝜃 (2) we first generate a set of full trajectories τ𝑜𝑟𝑔 = {𝜏𝑜𝑟𝑔𝑘}
1000
𝑘=1 using the

policy 𝜋𝜃. Lastly, we use the algorithms described in Section 3.2 to optimise for the quality criteria in

Section 3.1 to produce one CTE per full trajectory 𝐶𝑇𝐸𝑠 = {𝑡𝑜𝑟𝑔𝑘 , 𝑡𝑐𝑓𝑘}
1000
𝑘 . We conducted a grid search of

hyperparameters for each of the generation algorithms. Based on that we choose 𝑝𝑀𝐶𝑇𝑂(𝑒𝑛𝑑) = 0.35,
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎 = 0.003 and 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 10 for MCTO, 𝑝𝐷𝑎𝐶(𝑒𝑛𝑑) = 0.55 and 𝑛𝑑𝑒𝑣 𝑖𝑎𝑖𝑡𝑜𝑛𝑠 = 3 for DaC and
𝑝𝑅𝑎𝑛𝑑𝑜𝑚(𝑒𝑛𝑑) = 0.15 for Random.

4.2. Evaluating the informativeness of CTEs

We argue that informative explanations allow the explainee to better understand the learned reward
function, which we formalize as the explainee’s ability to assign similar average rewards to unseen
trajectories as the reward function.

To evaluate the informativeness of CTEs, we employ a Neural Network (NN) as a proxy-human
model to learn from the explanations and to predict the average reward assigned by 𝑅𝜃 for a trajectory.
While humans learn differently from data than an NN, this evaluation setup still gives us important
insights into the functioning and effectiveness of CTEs.

Notably, this measure only serves to evaluate the generation method and would not be used when
showing CTEs to humans. It allows us to test whether extracting generalisable knowledge about the
reward function from the provided CTE is possible by measuring how well the proxy-human model can
predict unseen CTEs. Furthermore, it allows us to compare different algorithms and quality criteria by
measuring and contrasting the informativeness of CTEs they generate.

The evaluation procedure consists of three steps, as presented in Figure 2: (3) features and labels are
extracted from the CTEs to form a dataset to train on, (4) a proxy-human model is trained to predict the
rewards of trajectories from these features, and, lastly, (5) the similarity between the predictions of the
proxy-human model and the rewards assigned by 𝑅𝜃 is measured to indicate how informative the CTEs
were to the model.

Extracting features and labels (3)
We extract 46 handcrafted features 𝐹(𝑡) = {𝑓0, ..., 𝑓45} about the partial trajectories. These features
represent concepts that the reward function might consider in its decision-making, for example of the
form “time spent using item X” or “average distance from object Y”. We opted against methods for
automatic feature [43] extraction to avoid introducing more moving parts in the evaluation. The average
reward for the states in a partial trajectory serves as the label for the proxy-human model 𝑟 = 1

|𝑡 |Σ𝑠∈𝑡𝑅𝜃(𝑠).
By averaging the reward we avoid biasing the learning to the length of partial trajectories.
Learning a proxy-human model (4)

A proxy-human regression model 𝑀𝜙 is trained to predict the average reward 𝑟 given to the partial
trajectory 𝑡 by 𝑅𝜃 from the extracted features 𝐹(𝑡). Humans learn from counterfactual explanations in a
contrastive manner by looking at the difference in outputs to causally reason about the effect of the
inputs [33] but also learn from the individual data points. Since we aim to make 𝑀𝜙 learn in a similar
way to a human we train 𝑀𝜙 on two tasks. In the single task, it is trained to separately predict the
average reward for the original and the counterfactual. Giving rewards to unseen trajectories shows
how similar the judgements of 𝑀𝜙 and 𝑅𝜃 are for trajectories. The loss on one CTE for this task is the
sum: 𝐿𝑠𝑖𝑛𝑔𝑙𝑒(𝑡𝑜𝑟𝑔, 𝑡𝑐𝑓) = (𝑀𝜙(𝑡𝑜𝑟𝑔) − 𝑅𝜃(𝑡𝑜𝑟𝑔))2 + (𝑀𝜙(𝑡𝑐𝑓) − 𝑅𝜃(𝑡𝑐𝑓))2.
In the contrastive task, 𝑀𝜙 is trained to predict the difference between the average original and
counterfactual reward. By doing this we train 𝑀𝜙 to reason about how the difference in inputs
causes the outputs instead of only learning from data points independently: 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒(𝑡𝑜𝑟𝑔, 𝑡𝑐𝑓) =
[(𝑀𝜙(𝑡𝑜𝑟𝑔) − (𝑀𝜙(𝑡𝑐𝑓)) − (𝑅𝜃(𝑡𝑜𝑟𝑔) − 𝑅𝜃(𝑡𝑐𝑓)]2.
𝑀𝜙 is defined as a 4-layer NN that receives the features extracted from both the original and the

counterfactual as a concatenated input and is trained in a multi-task fashion on single and contrastive
tasks. The body of the NN is shared between both tasks and feeds into two separate last layers that
perform the two tasks separately. The losses of both tasks are used separately to update their respective
last layer and are added into a weighted sum to update the shared body of the network.

We train the NN on 800 samples with the Adam optimiser and weight decay and results are averaged
over 30 random initialisations. We perform hyperparameter tuning using 5-fold cross-validation for the
learning rate, regularisation values, number of training epochs and dimensionality of hidden layers.

Contra stiv e Sing le
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
In
fo
rm

at
iv
en

es

M
CT

O

M
CT

O

D
aC

D
aC

Ra
nd

om

Ra
nd

om

(a) The average informativeness of CTEs generated by
MCTO, DaC and Random for a NN trained for sin-
gle and contrastive predictions, along with median,
upper and lower quartile.

0.0 0.2 0.4 0.6 0.8
Correlation with informativeness

Sparsity

Realisticness

State
Importance

Diversity

Proximity

Validity contrastive
single

(b) Spearman correlation between weights for the qual-
ity criteria and the informativeness of the resulting
CTEs for𝑀𝜙 for the contrastive and single task. Av-
eraged over 10 models along with the median and
upper and lower quartile.

Measuring similarity to the reward function (5)
To measure how similar the proxy-human model’s predictions are to the reward function’s outputs we
measure the Pearson Correlation between them on unseen CTEs. Reward functions are invariant under
multiplication of positive numbers and addition [44]. This is well captured by the Pearson Correlation
because it is insensitive to constant additions or multiplications. To ensure a fair comparison between
different settings we test how well a model trained on CTEs from one setting generalises to a combined
test set that contains CTEs from all settings.

5. Experiments

This Section describes the results of three experiments that test the overall informativeness of CTEs,
compare the generation algorithms and evaluate the quality criteria.

5.1. Experiment 1: Informativeness of Explanations for proxy-human model

Experimental Setup: We want to determine the success of our methods in generating informative
explanations for a proxy-human model 𝑀𝜙, while also comparing the generation algorithms on the
downstream task. As described in Section 4.2 each generation algorithm produced 800 CTEs on which
we trained 10 𝑀𝜙s each, before testing the Pearson Correlation between their predictions and the
average rewards on a combined test set of 600 CTEs. We use the weights from Table 2 for the quality
criteria.
Results: Figure 3a shows that 𝑀𝜙s trained on CTEs from MCTO achieved on average higher

correlation values. 𝑀𝜙s trained on DaC’s CTEs were significantly (𝑝 < 0.001) worse, while the models
trained on randomly generated CTEs achieved a much lower correlation on both tasks.

5.2. Experiment 2: Quality of Generation Algorithms

Experimental Setup: This experiment tests how good the generation algorithms are at optimising
for the quality value. Each generation algorithm produced 1000 CTEs and their quality value 𝜌 was
measured. To make this test independent of the weights for quality criteria, each CTE is optimised
for a different uniformly sampled set of weights: ω = {𝜔𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑗 , ..., 𝜔𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑗}

1000
𝑗=1 , where 𝜔𝑖 ∼ 𝑈 (0, 1).

Furthermore, the efficiency of algorithms (seconds/generated CTE) and the length and starting time of
CTEs were recorded.

MCTO DaC Random
Avg quality value 𝜌 ↑ 1.44 1.32 1.1
Std quality value 𝜌 0.47 0.49 0.37
Efficiency (s/CTE) ↓ 3 14.86 5.46 0.04
Length (# steps) 2.76 4.96 7.41
Starting Points (# first step) 20.96 20.45 42.58

Table 1
Shows the average quality value 𝜌 and its variance achieved by MCTO, DaC and Random, along with the
efficiency of generating CTEs, the length of the CTEs and at what step in the environment they started.

Validity Proximity Diversity State Importance Realisticness Sparsity
0.982 0.98 0.576 0.528 0.303 0.851

Table 2
Most informative set of weights for MCTO and DaC.

Results: From Table 1 we see that MCTO achieved a higher average quality value than DaC, which
again outperformed the random baseline (differences are significant with 𝑝 < 1𝑒−7). However, the
higher performance came at a computational cost, since MCTO was slower, while Random was very
efficient. On average the trajectories of Randomwere the longest and those ofMCTO the shortest. Lastly,
both MCTO and DaC tended to choose starting times earlier in the environment (20.96 and 20.45 out of
75 timesteps).

5.3. Experiment 3: Informativeness of quality criteria

Experimental Setup: Finally, we wanted to determine the influence of a quality criterion on informa-
tiveness. For this, we analyzed the Spearman correlation between the weight assigned to the criterion
during the generation of a set of CTEs and the informativeness of this set of CTEs. Simultaneously we
carried out the calibration phase to determine the set of weights which leads to the most informative
CTEs for an explainee and generation algorithm.

Thirty sets of weights ω were each used to generate one set of 1000 CTEs with MCTO. 800 CTEs were
used to train 10 𝑀𝜙s as described in Section 4.2. The performances of the resulting 30 sets of 𝑀𝜙s were
evaluated on a test set that combines the remaining 200 samples from each of the 30 sets of CTEs. This
indicates the informativeness of the CTEs they were trained on. By measuring the Spearman correlation
between the weights assigned to a criterion and the informativeness of the resulting CTEs for 𝑀𝜙, we
can infer the importance of that criterion for making CTEs informative. Furthermore, we record the set
of weights which leads to the most informative CTEs for each generation algorithm except Random
which is independent of weights.

Results: Figure 3b shows that for both contrastive and single learning, the weights of Validity
(𝜔𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦) correlated the strongest with the informativeness for 𝑀𝜙. This is followed by 𝜔𝑅𝑒𝑎𝑙𝑖𝑠𝑡 𝑖𝑐𝑛𝑒𝑠𝑠,
𝜔𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦, 𝜔𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 and 𝜔𝑆𝑡𝑎𝑡𝑒𝐼𝑚𝑝𝑜𝑟 𝑡𝑎𝑛𝑐𝑒 which all show a moderate correlation with the informativeness,
while 𝜔𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 was barely or even negatively correlated with informativeness. While there are differences
between the importance of criteria for the two tasks, they end up with similar results.

Furthermore, we find that the same set of weights leads to the most informative CTEs for both MCTO
and DaC. It assigns very high weights to Validity and Proximity, while Realisticness is weighted low.
Contrary to Figure 3b Sparsity is highly weighted.

5.4. Discussion

CTEs are informative for the proxy-human model. Experiment 1 shows that an NN-based model
trained on CTEs is much better than random guessing at predicting rewards or judging the difference in
rewards between unseen CTEs. It also shows a capability to generalise to out-of-distribution examples

3Efficiency differs depending on the hardware used.

when predicting CTEs generated by other algorithms. This indicates that CTEs enable an explainee
to learn some aspects of the reward function which hold generally across different distributions of
trajectories.

However, the fact that the correlations of 𝑀𝜙’s predictions with the true labels are ≤ 0.60 clearly
shows that there are aspects of the reward function, which 𝑀𝜙 did not pick up on. This could be
explained by a lack of training samples, a loss of information during the feature extraction or insufficient
coverage of different situations in the environment. Furthermore, the studied reward function is noisy,
often outputting different rewards for apparently similar situations and is thus hard to understand.

MCTO generated the most informative CTEs, while the CTEs from Random were less informative.
Similarly, we find that MCTO is the most effective generation algorithm for optimising the

quality value, while DaC outperforms Random. The fact that the algorithms which achieved higher
quality values in Experiment 2 also produced more informative CTEs in Experiment 1 indicates that
optimising well for the quality value is generally useful for making more informative CTEs. Table 1
shows a trade-off, between the performance and efficiency of the generation algorithms, which likely
appears because a more exhaustive search finds higher-scoring CTEs. Furthermore, MCTO and DaC
selected CTEs with earlier starting times. This is because the environment had higher fluctuations in
rewards early on, which benefits Validity and State importance. This shows that they are able to select
CTEs in more interesting parts of the environment. They also tend to choose shorter trajectories, which
score higher on Sparsity.

Among the criteria Validity is the most important criterion for generating informative CTEs
as shown in Experiment 3. High weights for Validity lead to higher differences in rewards and lead to a
larger range of labels for contrastive predictions. Possibly, an NN can learn more information from these
larger differences and is thus better informed by CTEs that are high in Validity. Proximity, Realisticness,
Diversity and State importance are also beneficial for having the proxy-human model learn from CTEs,
but we are less certain about why they are beneficial. Although prioritising Sparsity does not correlate
with informativeness, the most informative set of weights does give it a high weight. However, this
high weight might be a fluke since we only tried 30 sets of weights. In any case, we should not conclude
that humans would not benefit from sparse explanations. While NNs can easily compute gradients over
many different features simultaneously, humans can only draw inferences about a few features at once
[45]. This clarifies that the prioritisation of quality criteria will likely differ for a human.

The fact that the two tasks largely agreed on the importance of quality criteria indicates that they
complement each other. This might be because the two tasks are similar and thus benefit from developing
similar representations in the shared body of the network. Furthermore, because the same set of weights
out of 30 options led to the most informative CTEs when using MCTO and DaC we can speculate that
the relative importance of quality criteria for an explained is similar, independent of the generation
algorithm used.

Limitations: Since we do notmeasure the informativeness of CTEs for a human user, our experiments
do not prove that CTEs are informative for humans or show how important the criteria would be to
a user. Furthermore, we only conduct experiments on a single learned reward function in a single
environment, making it unclear how our findings will generalise to other settings. The method might
especially struggle with large and complex environments where it is difficult to achieve high coverage of
the environment with CTEs. Further, depends on the ability to reset the environment to previous states,
which is not given in some environments. Lastly, our evaluation measure depends on hand-crafted
features which limits its applicability.

6. Related Work

This Section covers previous work on the interpretability of reward functions and counterfactual
explanations for AI.

6.1. Interpretability of Learned Reward Functions

Reward functions can be made intrinsically more interpretable by learning them as decision trees
[46, 47, 48] or in logical domains [49, 50]. Attempts have been made to make deep reward functions
more interpretable by simplifying them through equivalence transformation [51] or by imitating a
Neural Network with a decision tree [52]. However, such interpretable representations can negatively
impact the performance of the method.

To avoid this drawback, we interpret learned reward functions via post-hoc explanations. Post-hoc
methods are applied after the model has been trained to explain the model’s decision-making process.
Lindsey and Shah [53, 54] test the effectiveness and required cognitive workload of simple explanation
techniques about linear reward functions. While their work requires linear reward functions our method
is applicable to any representation of a reward function.

The closest work to ours comes from Michaud et al. [21] who apply gradient salience and occlusion
maps to identify flaws in a learned reward function and employ handcrafted counterfactual inputs to
validate their findings. Our work focuses on counterfactuals and automatically generates them to be of
high quality.

6.2. Counterfactual Explanations

Despite a large body of work on generating counterfactual explanations about ML models in supervised
learning problems [55, 29, 56, 57] and their relation to human psychology [30, 58], this approach has
only recently been adapted to explain RL policies. Counterfactuals consist of a change in certain input
variables which cause a change in outputs [26]. In the RL setting, counterfactual explanations can
be changes in Features, Goals, Objectives, Events, or Expectations that cause the agent to change its
pursued Actions, Plans, or Policies [32]. This can improve users’ understanding of out-of-distribution
behaviour [36], provide them with more informative demonstrations [59] or showcase how an agent’s
environmental beliefs influence its planning [60]. Instead of explaining a policy 𝜋 this paper presents
the first principled attempt to use them to use counterfactuals to explain a reward function 𝑅.

7. Conclusion

While reward learning presents a promising approach for aligning AI systems with human values, there
is a lack of methods to interpret the resulting reward functions. To address this we formulate the notion
of Counterfactual Trajectory Explanations (CTEs) and propose algorithms to generate them. Our results
show that CTEs are informative for an explainee, but do not lead to a perfect understanding of the
reward function. Further, they validate our MCTO algorithm to be effective at generating CTEs and
imply that the difference in outcomes between an original and counterfactual trajectory is especially
important to achieve informative explanations. This research demonstrates that it is fruitful to apply
techniques from XAI to interpret learned reward functions.

Future work should carry out a user study to test the informativeness of CTEs for humans. Fur-
thermore, the method should be evaluated in more complex environments and on a range of reward
functions produced by different reward learning algorithms. Ultimately, we hope that CTEs will be
used in practice to allow users to understand the misalignments between their values and a reward
function, thus enabling them to improve the reward function with new demonstrations or feedback.

Acknowledgments

The project on which this report is based was funded by the Federal Ministry of Education and Research
under the funding code 16KIS2012. The responsibility for the content of this publication lies with the
author. Further, This research was partially supported by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215.

References

[1] C. Yu, J. Liu, S. Nemati, G. Yin, Reinforcement learning in healthcare: A survey, ACM Computing
Surveys 55 (2021).

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, et al., Deep reinforcement learning
for autonomous driving: A survey, IEEE Transactions on Intelligent Transportation Systems 23
(2022) 4909–4926.

[3] M. M. Afsar, T. Crump, B. Far, Reinforcement learning based recommender systems: A survey,
ACM Computing Surveys 55 (2022).

[4] L. Cavalcante Siebert, M. L. Lupetti, E. Aizenberg, N. Beckers, A. Zgonnikov, et al., Meaningful
human control: actionable properties for ai system development, AI and Ethics 3 (2023) 241–255.

[5] S. Russell, Human compatible: Artificial intelligence and the problem of control, Penguin, 2019.
[6] A. Pan, K. Bhatia, J. Steinhardt, The effects of reward misspecification: Mapping and mitigating

misaligned models, in: International Conference on Learning Representations, 2022.
[7] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, D. Mané, Concrete problems in ai

safety, arXiv preprint arXiv:1606.06565 (2016).
[8] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, D. Amodei, Deep reinforcement learning

from human preferences, Advances in neural information processing systems 30 (2017).
[9] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, et al., Training a helpful and harmless assistant

with reinforcement learning from human feedback, arXiv preprint arXiv:2204.05862 (2022).
arXiv:2204.05862.

[10] A. Y. Ng, S. J. Russell, Algorithms for inverse reinforcement learning, in: Proceedings of the
Seventeenth International Conference on Machine Learning, 2000, pp. 663–670.

[11] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, S. Legg, Scalable agent alignment via reward
modeling: a research direction, arXiv preprint arXiv:1811.07871 (2018).

[12] P. Abbeel, A. Y. Ng, Apprenticeship learning via inverse reinforcement learning, in: Proceedings
of the twenty-first international conference on Machine learning, 2004, p. 1.

[13] S. Armstrong, S. Mindermann, Occam’s razor is insufficient to infer the preferences of irrational
agents, Advances in neural information processing systems 31 (2018).

[14] J. M. V. Skalse, A. Abate, Misspecification in inverse reinforcement learning, in: NeurIPS ML
Safety Workshop, 2022.

[15] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, et al., Open problems and fundamental
limitations of reinforcement learning from human feedback, arXiv preprint arXiv:2307.15217
(2023). arXiv:2307.15217.

[16] R. Lera-Leri, F. Bistaffa, M. Serramia, M. Lopez-Sanchez, J. Rodriguez-Aguilar, Towards pluralistic
value alignment: Aggregating value systems through ℓp-regression, in: Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems, 2022, pp. 780–788.

[17] I. van de Poel, Understanding value change, Prometheus 38 (2022) 7–24.
[18] E. Liscio, M. van der Meer, L. C. Siebert, C. M. Jonker, P. K. Murukannaiah, What values should an

agent align with? an empirical comparison of general and context-specific values, Autonomous
Agents and Multi-Agent Systems 36 (2022) 23.

[19] L. Sanneman, J. Shah, Transparent value alignment, in: Companion of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’23, New York, NY, USA, 2023, p.
557–560.

[20] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan,
et al., Explainable ai (xai): Core ideas, techniques, and solutions, ACM Computing Surveys 55
(2023) 1–33.

[21] E. J. Michaud, A. Gleave, S. Russell, Understanding learned reward functions, Deep RL Workshop,
NeurIPS 2020 (2020).

[22] R. M. Byrne, Counterfactual thought, Annual review of psychology 67 (2016) 135–157.
[23] D. Kahneman, D. T. Miller, Norm theory: Comparing reality to its alternatives., Psychological

review 93 (1986) 136.

http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2307.15217

[24] N. J. Roese, J. M. Olson, What might have been: The social psychology of counterfactual thinking,
Psychology Press, 2014.

[25] B. Mittelstadt, C. Russell, S. Wachter, Explaining explanations in ai, in: Proceedings of the
conference on fairness, accountability, and transparency, 2019, pp. 279–288.

[26] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening the black box:
Automated decisions and the gdpr, Harvard Journal of Law & Technology 31 (2018).

[27] D. R. Mandel, Of causal and counterfactual explanation, in: Understanding counterfactuals,
understanding causation: Issues in philosophy and psychology, Oxford University Press, 2011, p.
147.

[28] M. Peschl, A. Zgonnikov, F. A. Oliehoek, L. C. Siebert, Moral: Aligning ai with human norms
through multi-objective reinforced active learning, in: Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, Richland, SC, 2022, p.
1038–1046.

[29] A. Artelt, B. Hammer, On the computation of counterfactual explanations – a survey, arXiv
preprint arXiv:1911.07749 (2019).

[30] M. T. Keane, E. M. Kenny, E. Delaney, B. Smyth, If only we had better counterfactual explanations:
Five key deficits to rectify in the evaluation of counterfactual xai techniques, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), Survey Track (2021)
4466–4474.

[31] A. Verma, V. Murali, R. Singh, P. Kohli, S. Chaudhuri, Programmatically interpretable reinforcement
learning, in: International Conference on Machine Learning, PMLR, 2018, pp. 5045–5054.

[32] J. Gajcin, I. Dusparic, Counterfactual explanations for reinforcement learning, arXiv preprint
arXiv:2210.11846 (2022).

[33] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial
Intelligence 267 (2019) 1–38.

[34] M.-P. Dubuisson, A. Jain, A modified hausdorff distance for object matching, in: Proceedings of
12th International Conference on Pattern Recognition, volume 1, 1994, pp. 566–568 vol.1.

[35] S. H. Huang, D. Held, P. Abbeel, A. D. Dragan, Enabling robots to communicate their objectives,
Autonomous Robots 43 (2019) 309–326.

[36] J. Frost, O. Watkins, E. Weiner, P. Abbeel, T. Darrell, B. Plummer, K. Saenko, Explaining rein-
forcement learning policies through counterfactual trajectories, arXiv preprint arXiv:2201.12462
(2022).

[37] N. J. Roese, The functional basis of counterfactual thinking., Journal of personality and Social
Psychology 66 (1994) 805.

[38] S. H. Huang, K. Bhatia, P. Abbeel, A. D. Dragan, Establishing appropriate trust via critical states,
in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp.
3929–3936.

[39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go with deep neural
networks and tree search, Nature 529 (2016) 484–489.

[40] T. Vodopivec, S. Samothrakis, B. Ster, On monte carlo tree search and reinforcement learning,
Journal of Artificial Intelligence Research 60 (2017) 881–936.

[41] J. Schulman, F.Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms,
arXiv preprint arXiv:1707.06347 (2017).

[42] J. Fu, K. Luo, S. Levine, Learning robust rewards with adversarial inverse reinforcement learning,
arXiv preprint arXiv:1710.11248 (2017).

[43] A. O. Salau, S. Jain, Feature extraction: A survey of the types, techniques, applications, in: 2019
International Conference on Signal Processing and Communication (ICSC), 2019, pp. 158–164.

[44] A. Y. NG, Policy invariance under reward transformations : Theory and application to reward
shaping, Proc. of the Sixteenth International Conference on Machine Learning (1999).

[45] G. A. Miller, The magical number seven, plus or minus two: Some limits on our capacity for
processing information., Psychological review 63 (1956) 81.

[46] T. Bewley, F. Lecue, Interpretable preference-based reinforcement learning with tree-structured
reward functions, in: Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, 2022, pp. 118–126.

[47] A. Kalra, D. S. Brown, Interpretable reward learning via differentiable decision trees, in: NeurIPS
ML Safety Workshop, 2022.

[48] S. Srinivasan, F. Doshi-Velez, Interpretable batch irl to extract clinician goals in icu hypotension
management, AMIA Summits on Translational Science Proceedings 2020 (2020) 636.

[49] D. Kasenberg, M. Scheutz, Interpretable apprenticeship learning with temporal logic specifications,
in: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, pp. 4914–4921.

[50] T. Munzer, B. Piot, M. Geist, O. Pietquin, M. Lopes, Inverse reinforcement learning in relational
domains, in: International joint conferences on artificial intelligence, 2015.

[51] E. Jenner, A. Gleave, Preprocessing reward functions for interpretability, arXiv preprint
arXiv:2203.13553 (2022).

[52] J. Russell, E. Santos, Explaining reward functions in markov decision processes, in: The Thirty-
Second International Flairs Conference, 2019.

[53] L. Sanneman, J. Shah, Explaining reward functions to humans for better human-robot collaboration,
arXiv preprint arXiv:2110.04192 (2021).

[54] L. Sanneman, J. A. Shah, An empirical study of reward explanations with human-robot interaction
applications, IEEE Robotics and Automation Letters 7 (2022) 8956–8963.

[55] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson, C. Shah, Counterfactual explana-
tions and algorithmic recourses for machine learning: A review, arXiv preprint arXiv:2010.10596
(2020).

[56] R. Guidotti, Counterfactual explanations and how to find them: literature review and benchmark-
ing, Data Mining and Knowledge Discovery (2022) 1–55.

[57] I. Stepin, J. M. Alonso, A. Catala, M. Pereira-Fariña, A survey of contrastive and counterfactual
explanation generation methods for explainable artificial intelligence, IEEE Access 9 (2021)
11974–12001.

[58] R. M. Byrne, Counterfactuals in explainable artificial intelligence (xai): Evidence from human
reasoning., in: Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019, pp.
6276–6282.

[59] M. S. Lee, H. Admoni, R. Simmons, Reasoning about counterfactuals to improve human inverse
reinforcement learning, in: 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 9140–9147.

[60] G. Stein, Generating high-quality explanations for navigation in partially-revealed environments,
in: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, J. W. Vaughan (Eds.), Advances in Neural
Information Processing Systems, volume 34, 2021, pp. 17493–17506.

	1 Introduction
	2 Counterfactual Trajectory Explanations (CTEs)
	3 Method
	3.1 Determining the quality of CTEs
	3.1.1 Quality Criteria
	3.1.2 Combining quality criteria into a scalar quality value

	3.2 Generation algorithms for CTEs

	4 Evaluation
	4.1 Generating reward functions and CTEs
	4.2 Evaluating the informativeness of CTEs

	5 Experiments
	5.1 Experiment 1: Informativeness of Explanations for proxy-human model
	5.2 Experiment 2: Quality of Generation Algorithms
	5.3 Experiment 3: Informativeness of quality criteria
	5.4 Discussion

	6 Related Work
	6.1 Interpretability of Learned Reward Functions
	6.2 Counterfactual Explanations

	7 Conclusion

